Faculty & Staff

Program Leadership

Diane Gilbert-Diamond, ScD
QBS Director
QBS 130/BIOL 72: Epidemiology I
Dr. Gilbert-Diamond's research lab focuses on gene-environment interactions related to child growth and health including in utero exposures to toxic metals and vitamin D as well as early life exposures to electronic media and unhealthy diets.


Scott Gerber, PhD
QBS Associate Director
Dr. Gerber's lab develops high-throughput mass spectrometry technology and bioinformatics methods for the analysis of proteins and their post-translational modifications in complex biological processes such as cell division and tumorigenesis.


Michael Whitfield, PhD
Chair of Biomedical Data Science
QBS 146: Bioinformatics I
Dr. Whitfield's work focuses on is Precision Medicine in systemic sclerosis (SSc). His laboratory is identifying gene expression biomarkers that subset SSc patients, predict clinical endpoints, and assess response to therapy. The lab is focused on understanding the pathophysiology of the disease, analyzing molecular data from SSc clinical trials, perform network analyses on SSc genomic data, and using this information for drug repositioning efforts.

Margaret Karagas, PhD
Chair of Epidemiology
Professor Karagas' research encompasses interdisciplinary studies to illuminate the etiology of human cancers, along with adverse pregnancy and children's health outcomes. Her work seeks to identify emerging environmental exposures, host factors and mechanisms - that impact health from infancy to adult life, and to apply novel methods and technologies to understand disease pathogenesis.

Jay Dunlap, PhD
Chair of Molecular and Systems Biology
Dr. Dunlap's research is directed towards understanding the mechanism by which eukaryotic organisms keep time on a daily basis, and how this capacity to keep time is used to regulate metabolism and development. Circadian clocks with fundamentally identical characteristics are found in all groups of eukaryotic organisms, but the uses to which these clock are put reflects the diversity of evolution.

Biomedical Data Science Faculty

Nicholas Jacobson, PhD
Dr. Jacobson’s research involves the utilization of mobile devices (smartphones and wearable devices) to assess and treat psychopathology (e.g. anxiety and depression). His quantitative expertise largely centers around analysis of intensive longitudinal data using a variety of techniques (machine learning, time series techniques, dynamical systems modeling, and novel methods development).


James O'Malley, PhD
QBS 122: Biostatistics III: Modeling Complex Data
James's research interests have centered on social network analysis, causal inference, multivariate-hierarchical modeling, and the design and analysis of medical device clinical trials. He has developed novel statistical methods, often involving novel use of Bayesian statistics, to solve important methodological and applied problems in health policy and health services research, including the evaluation of treatments and quality of care in multiple areas of medicine.


Todd MacKenzie, PhD
QBS 121/PH 271: Foundations of Biostatistics II: Regression
QBS 123: Biostatistics Consulting Lab
QBS 185: Health Data Science Capstone
Dr. MacKenzie uses statistics to help medical researchers from a vast spectrum of disciplines and specialties. Over a 180 peer-reviewed publications have resulted from his collaborations. He has expertise in survival analysis.

Alfredo Tirado-Ramos, PhD
Dr. Alfredo Tirado-Ramos’ leadership responsibilities at Dartmouth include serving as scientific director of biomedical informatics for Dartmouth-Hitchcock, director of biomedical informatics at SYNERGY Clinical and Translational Science Institute, and associate professor in the Departments of Biomedical Data Science and of Epidemiology at Geisel. He leads the Informatics Research Laboratory at Geisel, a full-spectrum biomedical informatics lab exploring the intersection between informatics, translational science, and clinically relevant data-centric problems, with a focus around information research systems for interdisciplinary collaboration between physicians, data scientists, and biostatisticians.

Tor Tosteson, ScD
QBS 121/PH 271: Foundations of Biostatistics II: Regression
QBS 123: Biostatistics Consulting Lab
The Tosteson lab conducts statistical research in the areas of noncompliance in surgical clinical trials, covariate measurement error for nonlinear regression models and statistical methods for image based research.

Eugene Demidenko, PhD
QBS 180: Data Visualization and Exploratory Statistics
Dr. Demidenko has broad interests in theoretical and applied statistics, applied mathematics, and biomathematics. He has published papers on mixed models, sample size and power calculations, asymptotic hypothesis tests comparison, optimization in statistics, image reconstruction, inverse problems, financial mathematics, partial differential equations, statistical analysis of image and shapes, and tumor response to treatment.

H. Robert Frost, PhD
QBS 120/PH 271: Foundations of Biostatistics I
QBS 270: Bioinformatics Journal Club (Spring)
Dr. Frost's research focuses on the development of novel bioinformatics and biostatistical methods for high-dimensional data analysis. Applied research areas include gene set testing, gene-gene and gene-environment interactions, biomedical ontologies and cancer genomics. Statistical topics of interest include penalized regression, principal component analysis, random matrix theory and optimization.

Jiang Gui, PhD
QBS 177/MATH 177: Methods of Statistical Learning for Big Data
QBS 194: Biostatistics Journal Club
QBS 270: Biostatistics Journal Club (Winter)
Dr. Gui's is developing cutting-edge biostatistical methods for the analysis of high-dimensional omics data. Recent work has focused on the detection of gene-gene interactions in genome-wide association data.

Saeed Hassanpour, PhD
QBS 108:
Applied Machine Learning

Saeed Hassanpour is developing computational methods and tools for extracting and organizing biomedical knowledge from unstructured data and text. The lab's data mining interests cover a wide range of data from clinical notes, patient medical history, radiology and pathology reports, medical imaging repositories, biomedical literature, the Web, and social media contents. The lab's knowledge extraction frameworks aim at distilling meaning from heterogeneous, complex and massive amounts of biomedical data and text, improving the understanding of medical conditions and health care, and having a practical impact on clinical care.

Erika Moen, PhD, MS
QBS 139/PH 147: Advanced Methods in Health Services Research
QBS 270: Bioinformatics Journal Club (Spring)
Dr. Moen’s research program uses state-of-the-art bioinformatics and data science methods to study variation in cancer care delivery and patient outcomes. Specific interests include using social network methodology to understand cancer care coordination and how novel cancer technologies are adopted by clinicians.

Jennifer Emond, PhD
QBS 185: Health Data Science Capstone
QBS 270: Epidemiology Journal Club (Fall)
My research aims to better understand the development of healthy lifestyle behaviors (diet, physical activity, sleep) during early childhood. I focus on measuring the influence of food marketing on children's dietary intake and eating behaviors, and on measuring how media use and media exposure in the home at a young age impacts sleep and eating behaviors prospectively.

Tracy Onega, PhD
QBS 139/PH 147: Advanced Methods in Health Services Research
Dr. Onega's major interests are in cancer control and geoinformatics, with a focus on understanding health care access, delivery, and effectiveness across health care systems and populations. Her team integrates methods from geosciences, informatics, and epidemiology to address questions ranging from technology diffusion to cancer screening, population health, and risk assessment.

Ramesh Yapalparvi, PhD
QBS 180:
Data Visualization and Exploratory Statistics
QBS 181: Data Wrangling and Data Visualization in Tableau
Dr. Yapalparvi has a PhD in applied mathematics where his research was focused on fluid dynamics, optimization, and mathematical modeling. Before transitioning as a data scientist, he worked in various universities across the world teaching mathematics.Ramesh has experience in developing predictive models for insurance and healthcare sectors and also provided consultancy services to various start-ups in engineering and machine learning.

Epidemiology Faculty

Jeremiah Brown, PhD, MS
QBS 184: Epidemiology Capstone
Jeremiah Brown an Associate Professor of Epidemiology, Biomedical Data Science, and Health Policy. He is the principal investigator on two NHLBI R01 grants focusing on predictive analytics for readmission. He leads the Cardiovascular Outcomes team at The Dartmouth Institute focusing on cardiovascular epidemiology and biomedical informatics research. He has also received funding from the American Heart Association focusing on molecular epidemiology, Agency for Healthcare Research and Quality (AHRQ) studying patient safety and acute kidney injury, and the Veterans Administration focusing on the development and evaluation of a national risk model for acute kidney injury. The cardiovascular outcomes team is committed to supporting student research and instruction, training PhD students, postdoctoral fellows, clinical residents and fellows, graduate students, medical school fellows, and undergraduate scholars through the Women in Science (WISP) program, Neukom Institute, and undergraduate advising & research (UGAR).

Brock Christensen, PhD
Dr. Christensen's research is focused on combining advances in molecular biology, genomics and bioinformatics with the powerful techniques of modern epidemiology and statistics to characterize epigenetic states in human health and disease.

Elizabeth Barry, PhD
Dr. Barry is the Project Director for the Vitamin D/Calcium Polyp Prevention Study, a multi-centered randomized controlled trial of Vitamin D and/or Calcium for the prevention of colorectal adenomas. Her research focuses on cancer chemoprevention and the mechanism of action of chemopreventative agents.

Anne Hoen, PhD

QBS 136: Applied Epidemiological Methods I
QBS 137: Applied Epidemiological Methods II
Dr. Hoen's research focus is on the development of the microbiome in infants and children, and the associations between environmental and dietary exposures, the microbiome, and risk for infectious and other diseases.

Caitlin Howe, PhD

Dr. Howe’s research focuses on toxic metal exposures and their impacts on maternal and child health, with a particular interest in effects on early life growth and cardiometabolic health. Additional areas of interest include epigenetic mediators of toxicant exposures and metals toxicity in the context of nutritional status and complex environmental mixtures.

Michael Passarelli, PhD
QBS 133: Clinical Epidemiology
Dr. Passarelli is a cancer epidemiologist focusing on genetic and environmental risk factors for common cancers, including the molecular epidemiology of colorectal cancer and adenomas.

Judy Rees,PhD
QBS 134: Topics in Epidemiology
Dr. Rees is a physician epidemiologist and the director of the New Hampshire State Cancer Registry. Her research interests include disease surveillance; epidemiology of cancer; multiple malignancies; epidemiology of infectious diseases; environmental health; randomized control trial methodology.

Megan Romano, PhD
QBS 131/BIOL 73: Foundations of Epidemiology II
Dr. Romano's research lab explores the influence of maternal exposure to environmental endocrine disrupting chemicals (EDCs) during pregnancy on early life growth, childhood development, and pregnancy complications, with a focus on EDCs commonly found in consumer products in the United States, including phthalates, perfluoroalkyl substances (PFAS), parabens, and flame retardants.

Lucas A. Salas

Lucas A. Salas, M.D., Ph.D., M.P.H. 
QBS 271:: Advanced Epidemiology Journal Club: Epigenetics
The broad goal of Dr. Salas research is to investigate how cell heterogeneity impact human health and disease, with an emphasis on how genetic, environmental and lifestyle factors model the human epigenome and therefore the cell plasticity. Dr. Salas’ laboratory studies how some key epigenetic mechanisms (DNA methylation, DNA hydroxymethylation and miRNA alterations) affect gene expression and cancer outcomes, including how the immune cells are altered in this disease. Other research interests include biomarker development, chronic inflammation and human disease, and how exposures during fetal life alter newborn and childhood outcomes.

The Dartmouth Institute Faculty

Aurora Drew, PhD
Aurora is on the faculty at The Dartmouth Institute for Health Policy and Clinical Practice. She is a public health practitioner and teacher with a passion and experience bringing evidence to practice. She holds a PhD from The Dartmouth Institute for Health Policy and Clinical Practice and a Master’s degree in Education from New York University. Aurora currently works on the Synergy Community Engaged Research Core; is a co-investigator in a multidisciplinary, mixed method, multi-institutional study of an intervention to improve care for infectious diseases among people who use drugs in rural New England; teaches applied epidemiology and capstone classes in the public health program at Dartmouth and health data science programs; and consults with the Greater Sullivan County Public Health Network and Dartmouth-Hitchcock Population Health. In her free time, Aurora enjoys time on the water and co-manages a Destination Imagination team.

Inas Khayal
QBS 192: Health Informatics
Inas Khayal is a highly interdisciplinary translational researcher focused on improving chronic disease health outcomes with a focus on serious illness. Her work began in biomedical research – within the clinic – using MRI for brain tumor research. It expanded to Internet-of-Things enabled social and environmental mobile sensing – outside the clinic – and within ‘real-world’ living labs. Her work now acts at the intersection of engineering, medicine, computation, and innovation and seeks to (re)design health care delivery systems to match the complex needs and experiences of patients to improve health outcomes.

Anna N.A. Tosteson, PhD
QBS 141/PH 121: Decision & Cost-effective Analysis
Dr. Tosteson's research addresses clinical and health policy issues in cancer and musculoskeletal diseases through decision-analytic modeling and economic evaluation. Her methodological interests include decision-analytic modeling, comparative effectiveness research, and statistical methods for diagnostic technology assessment.

Computer Science Faculty

Chris Bailey-Kellogg, PhD
QBS 175/COSC 175: Bioinformatics II
The goal of the Computational Structural Biology Laboratory (CSBL) is to develop integrated computational-experimental approaches to the structural and functional understanding of and control over the molecular machinery of the cell.

Gevorg Grigoryan, PhD
The focus of Dr. Grigoryan's research is to understand the principles underlying natural protein structure and function towards the design of novel proteins for targeted applications. Specific problems of interest include designing proteins to specifically disrupt/potentiate cellular protein-protein interactions, designing protein self-assembly as well as co-assembly of proteins with nanomaterials, and the development of novel computational tools to enable more quantitative/accurate design of detailed molecular properties.

Soroush Vosoughi, PhD
Dr. Vosoughi's research interests lie at the intersection of machine learning, natural language processing and network science. His lab develops and applies methods to mine and model complex unstructured data from various domains. The specific problems his lab investigates are varied and cross-disciplinary.

Engineering Faculty

Margaret Ackerman, PhD
The Ackerman laboratory conducts interdisciplinary research at the interface of biomedical and engineering sciences: developing high throughput tools to evaluate the antibody response in disease states ranging from infection to cancer in order to aid in therapeutic antibody and vaccine design and development. We aim to understand the protective mechanism of antibodies using approaches grounded in fundamental engineering principles utilizing protein evolution, molecular biology, and mathematical modeling.

Solomon Diamond, PhD
The objective of Dr. Diamond's research is to use bioengineering and simulation to understand how the brain works. Specific interests include biomedical imaging, functional neuroimaging, physiological modeling, neurovascular coupling and magnetic nanoparticle imaging.

Jane Hill, PhD
The Hill lab focuses on determining the identity of pathogens infecting the lung, bloodstream, or urine using the molecules present on a patient's breath, or directly "sniffing" the fluid, respectively. The researchers use a variety of tools in combination, including: advanced mass spectrometry, microbiology, molecular biology, advanced statistics, and also, basic electronics.

Molecular & Systems Biology Faculty

Giovanni Bosco, PhD
The Bosco lab has two major interests:One part of the lab studieslearning and memory and inheritance of behavior. The other part of the lab studies howchromosomes and chromatinare organized in 3-dimensional space. Fruit flies are used as the model organism.

Aaron McKenna, PhD
My lab is interested in how cells grow and divide to form complex structures, such as the transformation from the zygote to an adult human or from a transformed cell into a tumor mass. To study these processes, we develop technologies to trace the pattern of cell divisions which recovers the lineage of each cell. This information can be combined with other measures of cell state such as single-cell transcriptomic data to develop a rich picture of how choices are made in the development and how this process is dysregulated in diseases such as cancer.

Yolanda Sanchez, PhD
Dr. Sanchez's laboratory studies the pathways that protect genomic integrity and in particular the study of the Chk1 protein kinase, a target of inhibitors currently in clinical trials for cancer. DNA damage has been found to be an early event in pre-malignant lesions and can be caused by deregulation of cancer-driving genes called oncogenes. This finding led the Sanchez laboratory to develop and use genetically engineered mouse models to investigate the role that Chk1 pathways play in the early stages of cancer development.Genomic information can allow investigators to devise precision therapies that target molecular lesions specific to a patient's cancer. Dr. Sanchez's laboratory also works on applying the concept of synthetic lethality by combining chemical screens with isogenic platforms for the identification of drugs and drug targets for the treatment of cancer.

Todd Miller, PhD
PEMM 126: Cancer Biology
PEMM 132: Clinical Management of Cancer (2020)
The Miller Lab focuses on mechanisms of drug resistance and the implementation of molecular therapeutics for breast cancer. We integrate data from cellular and mouse models of breast cancer and early-phase clinical trials to understand how cancer cells respond and adapt to drugs, and ways to abrogate drug resistance.

Neurology Faculty

Barbara Jobst, PhD
In the Epilepsy and COGnition lab we study the relationship between cognition and epilepsy based on intracranial neurophysiology (Electrocorticography=ECoG). We also study the effectiveness of brain stimulation to treat epilepsy and seizures as well as to treat memory impairment.

Angeline Andrew, PhD
QBS 132: Molecular Biologic Markers in Human Health Studies
QBS 132.5: Molecular Biologic Markers in Human Health Studies Lab
Dr. Andrew is a molecular epidemiologist with research interests in genetic and environmental factor interactions and their impact on cancer risk or prognosis. Recent projects include a large-scale investigation of SNPs and exposure factors that influence bladder cancer, and a multi-level analysis of lung tumor molecular markers in relation to exposure factors.

Microbiology & Immunology Faculty

Daniel Schultz, PhD
The Schultz lab develops quantitative approaches to study the emergence, operation and optimization of the gene networks that control cell responses in bacteria, with a focus on antibiotic resistance mechanisms. We combine mathematical modeling, bioinformatics, experimental evolution and microfluidics to analyze how the cell controls the expression of resistance genes during drug responses. We strive to guide innovation in clinical therapies by uncovering the selective pressures that shape the evolution of antibiotic resistance in natural environments.

Medicine Faculty

Craig Tomlinson, PhD
The goal of the Environmental Diseases Genomics Laboratory is to understand the role of environmental agents such as dioxin in determining susceptibility to disease. A central focus of the lab is the use of genomics to understand obesity and the fetal basis of adult diseases (FeBAD).

Biological Sciences Faculty

Olga Zhaxybayeva, PhD
Dr. Zhaxybayeva's research interests are to understand how microbes change over time by mining data sets containing thousands of genomes and terabases of environmental DNA (metagenomes) in order to find new ways to characterize microbial communities, and track down genomic signatures of microbial adaptations.


Shaniqua Jones, MBA
Program Director - Operations & Marketing

Email: shaniqua.a.jones@dartmouth.edu | Phone: 603-653-9197

Kristine Giffin, PhD
Curriculum Director

Email: kristine.a.giffin@dartmouth.edu | Phone: 603-653-9163

Rosemary White
Program Coordinator

Email: rosemary.a.white@dartmouth.edu | Phone: 603-653-9172