Patricia A. Pioli, PhD
Title(s)
Associate Professor of Microbiology and Immunology
Additional Titles/Positions/Affiliations
NCCC Member
Department(s)
Microbiology and Immunology
Education
Dartmouth Medical School, Ph.D. 2001
George Washington University, B.S. 1993
Programs
Immunology Program
Molecular and Cellular Biology Graduate Programs
Program in Experimental and Molecular Medicine
Websites
https:
Academic Analytics
View Profile
Contact Information
Dartmouth Medical School
HB 7556
Lebanon NH 03756
Office: 644E Borwell Building
Phone: 603-650-2584
Fax: 603-650-6130
Email: pioli@dartmouth.edu
Professional Interests
autoimmunity, cancer immunotherapy, molecular immunology, endocrinology
Rotations and Thesis Projects
1. Determine how aberrant regulation of miRNAs affects activation of macrophages in autoimmune systemic sclerosis (scleroderma)
2. Identify the role that macrophages play in the immune/fibrotic axis in scleroderma
3. Determine how modulation of the tumor immune landscape (microenvironment) can be used to combat cancer
Biography
Dr. Pioli received a B.S. in biology from George Washington University in 1993 and a Ph.D. in biochemistry from Dartmouth Medical School in 2001. She performed post-doctoral research with Dr. Paul Guyre at Dartmouth from 2001-2004, studying the mechanisms by which cortisol influences macrophage activation and immune function. She was appointed Research Assistant Professor of Physiology from 2004-2010. In July 2010, Dr. Pioli joined the faculty of Dartmouth Medical School as Assistant Professor in the Department of Obstetrics and Gynecology and Microbiology and Immunology.
Human dermal fibroblast-derived exosomes induce macrophage activation in systemic sclerosis. T Cells and CDDO-Me Attenuate Immunosuppressive Activation of Human Melanoma-Conditioned Macrophages. Self-Assembled Human Skin Equivalents Model Macrophage Activation of Cutaneous Fibrogenesis in Systemic Sclerosis. CDDO-Me Alters the Tumor Microenvironment in Estrogen Receptor Negative Breast Cancer. Profibrotic Activation of Human Macrophages in Systemic Sclerosis. Systemic Sclerosis Dermal Fibroblasts Induce Cutaneous Fibrosis Through Lysyl Oxidase-like 4: New Evidence From Three-Dimensional Skin-like Tissues. Macrophages in Systemic Sclerosis: Novel Insights and Therapeutic Implications. Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin. The Stress Hormone Cortisol Enhances Interferon-υ-Mediated Proinflammatory Responses of Human Immune Cells. Mycophenolate Mofetil Treatment of Systemic Sclerosis Reduces Myeloid Cell Numbers and Attenuates the Inflammatory Gene Signature in Skin. |