Journal Articles:
Small changes in phospho-occupancy at the kinetochore–microtubule interface drive mitotic fidelity.
Kucharski TJ, Hards R, Vandal SE, Abad MA, Jeyaprakash AA, Kaye E, al-Rawi A, Ly T, Godek KM, Gerber SA, Compton DA
J. Cell Biol. 2022; 2022.07.25
A pluripotent developmental state confers a low fidelity of chromosome segregation.
Deng C, Ya A, Compton DA, and Godek KM
bioRxiv. 2022; 2022.03.01.482524.
Chromosome segregation fidelity is controlled by small changes in phospho-occupancy at the kinetochore-microtubule interface.
Kucharski TJ, Hards R, Godek KM, Gerber SA, and Compton DA
bioRxiv. 2021;2021.02.16.431549.
Kinetochores respond to subtle changes in the stability of microtubule attachments.
Warren JD, Valles SY, and Compton DA
bioRxiv. 2021:2021.02.19.432040
Identifying cyclinA/cdk1 substrates in mitosis in human cells.
Dumitru A and Compton DA
Methods Mol. Biol.2022;2415:175-182. doi: 10.1007/978-1-0716-1904-9_13
A comparative analysis of methods to measure kinetochore-microtubule attachment stability in mitosis.
Warren JD, Orr B, and Compton DA
Methods Mol. Biol.2020;158:91-116. doi: 10.1016/bs.mcb.2020.01.004.
Godek, K.M., Compton, D.A.: Quantitative methods to measure aneuploidy and chromosomal instability. Methods Cell Biol 144:15-32 (2018).
Zhao, Y., Carter, R., Natarajan, S., Varn, F.S., Compton, D.A., Gaward, C., Cheng, C., and Godek, K.M.: Single-cell RNA sequencing reveals the impact of chromosomal instability on glioblastoma cancer stem cells. BMC Med Genomics 12(1):79 doi: 10.1186/s1290-019-0532-5 (2019).
Laucius, C.D., Orr, B., and Compton, D.A.: Chromosomal instability suppresses the growth of K-Ras-induced lung adenomas. Cell Cycle 18:1702-1713 (2019).
Dumitru, AMG, Rusin, SF, Clark, AEM, Kettenbach, AN, and Compton DA: Cyclin A/Cdk1 modulates Plk1 activity in pro metaphase to regulate kinetochore-microtubule attachment stability. eLIFE. eLife 2017;6:e29303 DOI: 10.7554/eLife.29303.
Orr, B, Talje, L, Liu, Z, Kwok, BH, and Compton, DA: Adaptive resistance to an inhibitor of chromosomal instability in human cancer cells. Cell Reports. 17:1755-1763 (2016).
Hu S, Lu Y, Orr B, Godek K, Mustachio LM, Kawakami M, Sekula D, Compton DA, Freemantle S, Dmitrovsky E.: Specific CP110 phosphorylation sites mediate anaphase catastrophe after CDK2 inhibition: Evidence for cooperation with USP33 knockdown. Mol Cancer Ther. 14:2576-2585 (2015).
Kim JS, He X, Orr B, Wutz G, Hill V, Peters JM, Compton DA, Waldman T.: Intact cohesion, anaphase, and chromosome segregation in human cells harboring tumor-derived mutations in STAG2. PLoS Genet. 12(2):e1005865. doi: 10.1371/journal.pgen.1005865. (2016).
Godek KM, Venere M, Wu Q, Mills KD, Hickey WF, Rich JN, Compton DA.: Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells. Cancer Discov. 6:532-545. (2016).
Danilov AV, Hu S, Orr B, Godek K, Mustachio LM, Sekula D, Liu X, Kawakami M, Johnson FM, Compton DA, Freemantle SJ, Dmitrovsky E.: Dinaciclib induces anaphase catastrophe in lung cancer cells via inhibition of cyclin-dependent kinases 1 and 2. Mol Cancer Ther. 15:2758-2766. (2016).
Meppelink, A, Kabeche, L, Vromans, MJ, Compton, DA, and Lens, SM: Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation. Cell Reports 11:508-151 (2015).
Hu, S, Danilov, AV, Godek, K, Orr, B, Tafe, TJ, Rodriquez-Canales, J, Behrens, C, Mino, B, Moran, CA, Memoli, VA, Mustachio, LM, Galimberti, F, Ravi, S, DeCastro, A, Lu, Y, Sekula, D, Andrew, AS, Wistuba, II, Freemantle, S, Compton, DA, and Dmitrovsky, E: CDK2 inhibition causes anaphase catastrophe in lung cancer through the centrosomal protein CP110. Cancer Res 75:2029-2038 (2015).
Bakhoum, SF, Kabeche, L, Wood, MD, Laucius, CD, Qu, D, Laughney, AM, Reynolds, GE, Louie, RJ, Phillips, J, Chan, DA, Zaki, MI, Murnane, JP, Petritsch, C, and Compton, DA: Numerical chromosomal instability mediates susceptibility to radiation treatment. Nature Comm. doi: 10.1038/ncomms6990. (2015).
Godek, KM, Kabeche, L, and Compton, DA: Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57-64. (2015)
Bakhoum, SF, Kabeche, L, Wood, MD, Qu, D, Laughney, AM, Reynolds, GE, Louie RJ, Phillips, J, Chan, DA, Zaki, BI, Murnane, JP, Petritsch, C, and Compton, DA: Numerical chromosomal instability mediates susceptibility to radiation treatment. Nature Comm. 6:5990 DOI 10.1038/ncomms6990 (2015).
Bakhoum, SF, Slikworth, WT, Nardi, IK, Nicholson, JM, Compton, DA and Cimini, D.: The mitotic origin of chromosomal instability Curr. Biol. 24:R148-R149 (2014).
Kleyman, M, Kabeche, L, and Compton DA.: STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments. J. Cell Sci. (2014).
Bakhoum, SF, Kabeche, L, Murnane, JP, Zaki, BI, and Compton, DA: DNA damage response during mitosis induces whole chromosome mis-segregation. Cancer Discov. (2014).
Kabeche, L and Compton, DA: Cyclin A regulates kinetochore microtubules to promote faithful chromosome segregation. Nature 502:110-113 (2013).
Orr, B and Compton DA: A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front. Oncol. 3:164 (2013)
Maia, AR, Garcia, Z, Kabeche, L, Barisic M, Maffini, S, Macedo-Ribeiro, S, Cheeseman, IM, Compton, DA, Kaverina, I and Maiato, H: Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J. Cell Biol. 199:285-301 (2012)
Kabeche, L and Compton, DA: Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 22:638-644 (2012)
Hood, EA, Kettenbach, A, Gerber, S, and Compton, DA: Polo kinase (Plk1) regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol. Biol. Cell 23:2264-2274 (2012).
Bakhoum, SF, Danilova, OV, Kaur, P, Levy, NB, and Compton, DA: Chromosomal instability substantiates poor patient prognosis in patients with Diffuse B-Cell Lymphoma. Clin. Cancer Res. 17:7704-7711 (2011).
Thompson, SL and Compton, DA: Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc. Natl. Acad. Sci. USA 108:17974-17978 (2011).
Thompson, SL and Compton, DA: Chromosomes and cancer cells. Chromosome Research 19:433-444 (2011).
Galimberti, F, Thompson, SL, Ravi, S, Compton, DA, and Dmitrovsky, E: Anaphase catastrophe is a target for cancer therapy. Clin Cancer Res. 17:1218-1222 (2011).
Charlebois, BD, Kollu, S, Schek, HT, Compton, DA, and Hunt, AJ: Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages. Biophys. J. 100:1756-1764 (2011).
Amity L Manning, Samuel F Bakhoum, Stefano Maffini, Clara Correia-Melo, Helder Maiato and Duane A Compton.: CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO Journal 29:3531-3543 (2010)
Thompson, SL, Bakhoum, SF, and Compton, DA: Mechanisms of chromosomal instability. Curr Biol. 20:R285-R295 (2010)
Thompson, SL, and Compton, DA: Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188:369-381 (2010).
Galimberti F, Thompson SL, Liu X, Li H, Memoli V, Green SR, Direnzo J, Greninger P, Sharma SV, Settleman J, Compton DA, Dmitrovsky E.: Targeting the Cyclin E-Cdk-2 Complex Represses Lung Cancer Growth by Triggering Anaphase Catastrophe. Clin Cancer Res. 16:109-120 (2010)
Kollu S, Bakhoum SF, Compton DA.: Interplay of Microtubule Dynamics and Sliding during Bipolar Spindle Formation in Mammalian Cells. Curr Biol. 19:2108-2113
Bakhoum SF, Genovese G, Compton DA.: Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol. 2009 Dec 1;19(22):1937-42.
Bakhoum SF, Compton DA.: Cancer: CINful centrosomes. Curr Biol. 2009 Aug 11;19(15):R642-5.
Maffini, S., Maia, A.R.R., Manning, A.L., Maliga, Z., Pereira, A.L., Junqueira, M., Shevchenko, A., Hyman, A., Yates, J.R., Galjart, N., Compton, D.A., and Maiato, H.: Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr. Biol. 19:1566-1572 (2009)
Bakhoum, S.F., Thompson, S.L., Manning, A.L., and Compton, D.A.: Genome stability is ensured by temporal control of kinetochore-microtubule dynamics Nature Cell Biol. 11:27-35 (2009).
Manning, A.L. and Compton, D.A.: Snapshot: Nonmotor proteins in spindle assembly Cell 134: 694-694e1
Thompson, S.L., and Compton, D.A.: Examining the link between chromosomal instability and aneuploidy in human cells.J. Cell Biol. 180:665-672 (2008).
Manning, A.L. and Compton, D.A.: Structural and regulatory roles of nonmotor spindle proteins. Curr. Op. Cell Biol. 20:101-106 (2008).
Compton, D.A.: Standing Tall. Dartmouth Medicine 32:70 (2007).
Compton, D.A.: Chromosome orientation. J. Cell Biol. 179:179-181 (2007).
Myers, L.C. and Compton, D.A.: Mitosis: Springtime for chromatin. Curr. Biol. 17:R460-R462 (2007).
Manning, A.L., Ganem, N.J., Bakhoum, S., Wagenbach, M., Wordeman, L., and Compton, D.A.: The kinesin-13 proteins Kif2a, Kif2b and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol. Biol. Cell (2007)
Manning, A.L., and Compton, D.A.: Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells. Curr. Biol. 17: 260-265 (2007).
Compton, D.A.: Mitosis: Disorderly conduct at kinetochores. Curr. Biol. 16:R494-R496. (2006).
Hall, V.J. Compton, D.A., Stojkovic, P., Nesbitt, M., Herbert, M., Murdoch, A., and Stjkovic, M.: Developmental competience of human in vitro aged oocytes as host cells for nuclear transfer. Hum. Reprod. (2006).
Ganem, N.J, and Compton, D.A.: Functional roles of poleward microtubule flux during mitosis. Cell Cycle 5:481-485. (2006)
Compton, D.A.: Chromosomes walk the line. Nature Cell Biol. 8:308-310. (2006)
Ganem, N.J., Upton, K., and Compton, D.A.: Efficient mitosis in human cells lacking polewards microtubule flux. Curr. Biol. 15:1827-1832 (2005)
Compton, D.A.: Regulation of mitosis by poly(ADP-ribosyl)ation. Biochem. J. 391:e5-e6 (2005)
Compton, D.A.: Mitosis: PARty time in the spindle. Current Biol. 15:R178-179 (2005)
Simerly, C., Navara, C., Hyun, S.H., Lee, B.C., Kang, S.K., Capuano, S., Gosman, G., Dominko, T., Chong, K.-Y., Compton, D., Hwang, W.S., and Schatten, G.: Embryogenesis and blastocyst development after somatic cell nuclear transfer in non-human primates (NHP-SCNT): overcoming defects caused by meiotic spindle extraction. Dev. Biol.276:237-252 (2004)
Kisurina-Evgenieva, O., Mack, G., Du, Q., Macara, I., Khodjakov, A., and Compton, D.A.: Multiple mechanisms regulate NuMA dynamics at spindle poles. J. Cell Sci. 117:6391-6400 (2004)
Ganem, N., and Compton, D.A.: The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J. Cell Biol. 166:473-478 (2004)
Einarson, M.B., Cukierman, E., Compton, D.A., and Glemis, E.A.: Human enhancer of invasion-cluster, a coiled-coil protein required for passage through mitosis. Mol. Cell Biol. 24:3957-3971 (2004)
Chakravarty, A., Howard, L., and Compton, D.A.: A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol. Biol. Cell 15:2116-2132. (2004)
Ota, J., Yamashita, Y., Okawa, K., Kisanuki, H., Fijiwara, S., Ishikawa, M., Choi, Y.L., Ueno, S., Ohki, R., Koinuma, K., Wada, T., Compton, D., Kadoya, T., and Mano, H.: Proteomic analysis of hematopoietic stem cell-like fractions in leukemic disorders. Oncogene 22:5720-5728. (2003)
Levesque, A.A., Howard, L., and Compton, D.A.: A functional relationship between NuMA and Kid is involved in both spindle organization and chromosome alignment in vertebrate cells. Mol. Biol. Cell 14:3541-3552. (2003)
Simerly, C., Dominko, T., Navara, C., Payne, C., Capuano, S., Gosman, G., Chong, K.-Y., Takahashi, D., Chace, C., Compton, D., Hewitson, L., and Schatten, G.: Molecular correlates of primate nuclear transfer failures. Science 300: 297 (2003).
Khodjakov, A., Copenagle, L., Gordon, M.B., Compton, D.A., and Kapoor, T.M.: Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis J. Cell Biol. 160:671-683 (2003).
Garrett, S., Auer, K., Compton, D.A., and Kapoor, T.M.: hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division.Curr. Biol. 12:2055-2059 (2002).
Du, Q., Taylor, L., Compton, D.A., and Macara I.G.: LGN blocks the ability of NuMA to bind and stabilize microtubules: a mechanism for mitotic spindle assembly regulation.Curr. Biol. 12:1928-1933 (2002).
Compton, D.A.: Chromosome Segregation: Pulling from the Poles. Curr. Biol. 12:R651-R653 (2002).
Kapoor,T.M. and Compton, D.A.: Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J. Cell Biol. 157:551-556. (2002).
Mack, G. and Compton, D.A.: Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a novel spindle-associated protein. Proc. Natl. Acad. Sci., USA. 98:14434-14439.(2001).
Levesque, A. and Compton, D.A.: The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154:1135-1146. (2001).
Gordon, M., Howard, L., and Compton, D.A.: Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J. Cell Biol. 152:425-434. (2001).
Dionne, M.A., Sanchez, A., and Compton, D.A.: ch-TOGp is required for microtubule aster formation in a mammalian mitotic extract. J. Biol. Chem. 275:12346-12352. (2000).
Ye, K., Compton, D.A., Lai, M.M., Walensky, L.D., and Snyder, S.H.: Protein 4.1N binding to nuclear NuMA in PC12 cells mediates the anti-proliferative actions of nerve growth factor. J. Neuroscience 19:10747-10756 (1999).
Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G., and Compton, D.A.: The kinesin-related protein HSET opposes the activity of Eg5 and cross links microtubules in the mammalian mitotic spindle. J. Cell Biol. 147:351-365. (1999).
Quintyne, N.J., Gill, S.R., Eckley, D.M., Crego, C.L., Compton, D.A., and Schroer, T.A.: Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147:321-334 (1999).
Dionne, M.A., Howard, L., and Compton, D.A.: NuMA is a component of an insoluble matrix at mitotic spindle poles. Cell Motil. Cytoskel. 42:189-203. (1999).
Compton, D.A.: Focusing on spindle poles. J. Cell Sci. 111:1477-1481 (1998).
Gaglio, T., Dionne, M.A., and Compton, D.A.: Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 138:1055-1066 (1997).
Saredi, A., Howard, L., and Compton, D.A.: Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J. Cell Sci. 110:1287-1297 (1997).
Gaglio, T., Saredi, A., Bingham, J.B., Hasbani, M.J., Gill, S.R., Schroer, T.A., and Compton, D.A.: Opposing motor activities are required for the organization of the polar ends of the mammalian mitotic spindle. J. Cell Biol. 135:399-414 (1996).
Saredi, A., Howard, L., and Compton, D.A.: NuMA assembles into an extensive filamentous structure when expressed in the cell cytoplasm. J. Cell Sci. 109:619-630 (1996).
Gaglio, T., Saredi, A., and Compton, D.A.: NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131:693-708 (1995).
Compton, D.A., and Luo, C.: Mutation of the predicted p34cdc2 phosphorylation sites in NuMA impair the assembly of the mitotic spindle and block mitosis. J. Cell Sci. 108:621-633 (1995).
Invited Book Chapters:
Compton, D.A.: In vitro approaches for the study of molecular motors in aster formation. Methods in Cell Biol. 67:225-239. (2001).
Compton, D.A.: Spindle assembly in animal cells. Ann. Rev. Biochem.. 69:95-114 (2000).
Mountain, V., and Compton, D.A.: Dissecting the role of molecular motors in the mitotic spindle. Anat. Rec. (New Anat),261:14-24 (2000).
Compton, D.A.: New tools for the anti-mitotic toolbox. Science 286:913-914 (1999).
Gueth-Hallonet, C., Osborn, M., and Compton, D.A.: NuMA. in Guidebook to the Cytoskeletal and Motor Proteins; ed. Ron Vale and Thomas Kreis; Oxford University Press, Oxford, UK (1997).
Compton, D.A.: Production of M-phase and I-phase extracts from mammalian cells. in Molecular Motors and the Cytoskeleton: Part B (a volume of Methods in Enzymology); ed. Richard B. Vallee; Academic Press, San Diego, CA. (1997).