2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • 2014 • 2013 • 2011
90 |
Scodari, B.T.,* Chacko, S.,* Masumura, R.,* & Jacobson, N.C. (2023, In press). Using Machine Learning to Forecast Depressive Symptom Changes Among Subclinical Depressed Patients Receiving Stepped-Care Delivery or Usual Care. Journal of Affective Disorders. |
89 |
Lekkas, D.,* Gyorda, J.* & Jacobson, N.C. (2023, In press). Depression deconstructed: Wearables and passive digital phenotyping for analyzing individual symptoms. Behaviour Research and Therapy. |
88 |
Nemesure, M.D.,* Collins, A.C.,* Price, G.,* Griffin, T.Z.,* Pillai, A., Nepal, S., Heinz, M.V.,* Lekkas, D.,* Campbell, A.T., & Jacobson, N.C. (2023, In press). Depressive Symptoms as a Heterogeneous and Constantly Evolving Dynamical System: Idiographic Depressive Symptom Networks of Rapid Symptom Changes among Persons with Major Depressive Disorder. Journal of Psychopathology and Clinical Science. https://doi.org/10.31234/osf.io/pf4kc |
87 |
Collins, A.C.*, Price, G.*, Woodworth, R.J., & Jacobson, N.C. (2023, In press). Predicting Individual Response to a Web-Based Positive Psychology Intervention: A Machine Learning Approach. Journal of Positive Psychology. |
86 |
Teepe, G.W.,* Lukic, Y.X., Kleim, B., Jacobson, N.C., Schneider, F., Santhanam, P., Fleisch, E., & Kowatsch, T. (2023). Development of a digital biomarker and intervention for subclinical depression: Study protocol for a longitudinal waitlist control study. BMC Psychology, 11, 186. https://doi.org/10.1186/s40359-023-01215-1 |
85 |
Klein, R.J.,* Gyorda, J.A.,* Lekkas, D.,* & Jacobson, N.C. (2023, In press). Dysregulated emotion and trying substances in childhood: Insights from a large nationally representative cohort study. Substance Use and Misuse. |
84 |
Campbell, C.I., Chen, C.-H., Adams, S.R., Asyyed, A., Athale, N.R., Does, M.B., Hassanpour, S., Hichborn, E., Jackson-Morris, M., Jacobson, N.C., Jones, H.K., Kotz, D., Lambert-Harris, C.A., Li, Z., McLeman, B., Mishra, V., Stanger, C., Subramaniam, G., Wu, W., Zegers, C., & Marsch, L.A. (2023, In press). Patient Engagement in Multi-Modal Digital Phenotyping for Opioid Use Disorder. Journal of Medical Internet Research (JMIR). |
83 |
Heinz, M.V.*, Bhattacharya, S.*, Trudeau, B.*, Quist, R.*, Song, S.H*, Lee, C.M.*, & Jacobson, N.C. (2023, In press). Testing Domain Knowledge and Risk of Bias of a Large Scale General A.I. Model in Mental Health. Digital Health. |
82 |
Wang, B.,* Nemesure, M.D.,* Park, C.,* Price, G.D.,* Heinz, M.V.* & Jacobson N.C. (2023, In press). Leveraging Deep Learning Models to Understand the Daily Experience of Anxiety in Teenagers over the Course of a Year. Journal of Affective Disorders, 329, 293-299. https://doi.org/10.1016/j.jad.2023.02.084 |
81 |
Gyorda, J.A.*, Lekkas, D.*, Price, G.*, & Jacobson, N.C. (2023, In press). Evaluating the impact of mask mandates and political party on mental health search behavior in the United States during the COVID-19 pandemic: A generalized additive mixed model framework. Journal of Medical Internet Research (JMIR). https://doi.org/10.2196/40308 |
80 |
Greenberg, J.L., Phillips, K.A., Hoeppner, S.S., Jacobson, N.C., Fang, A., & Wilhelm S. (2022, In press). Mechanisms of Cognitive Behavioral Therapy vs. Supportive Psychotherapy in Body Dysmorphic Disorder: An Exploratory Mediation Analysis. Behaviour Research and Therapy. https://doi.org/10.1016/j.brat.2022.104251 |
79 |
Jacobson, N.C., Funk, B. & Abdullah, S. (2022, In press). Editorial: Leveraging Technology for Comprehensive Mental Health Assessment: Pairing Quantitative Models with Passively Collected Sensor Data. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2022.1126971 |
78 |
Jacobson, N.C., Erickson, T., Quach, C.M., & Singh, N.B. (2022, In press). Low Emotion Differentiation as a Transdiagnostic Risk Factor: Idiographic and Nomothetic Measurements Predicting Anxiety, Depression, and Personality Pathology. Cognitive Therapy and Research. http://dx.doi.org/10.1007/s10608-022-10347-4
|
77 |
Nemesure, M.D.*, Park, C.*, Morris, R., Chan, W. Fitzsimmons-Craft, E.E., Rackoff, C.G., Fowler, L., Taylor, C.B., & Jacobson, N.C. (2022). Evaluating Change in Body Image Concerns Following a Single Session Digital Intervention. Body Image, 44, 64-68. https://doi.org/10.1016/j.bodyim.2022.11.007 |
76 |
Yom-Tov, E., Lekkas, D.*, Heinz, M.V.*, Nguyen, T., Barr, P.J., & Jacobson, N.C. (2022). Digitally Filling the Access Gap in Mental Health Care: An Investigation of the Association between Rurality and Online Engagement with Validated Self-report Screens across the United States. Journal of Psychiatric Research. https://doi.org/10.1016/j.jpsychires.2022.11.024 |
75 |
Klein R.J.,* Rapaport, R.,* Gyorda, J.A., Jacobson, N.C. & Robinson, M.D. (2022, In press). Second-to-Second Affective Responses to Images Correspond with Affective Reactivity, Variability, and Instability in Daily Life. Experimental Psychology. |
74 |
Anderson, M.A., Budney, A.J., Jacobson, N.C., Nahum-Shani, I., & Stanger. (2022). End User Participation in the Development of an Ecological Momentary Intervention to Improve Coping with Cannabis Cravings: Formative Study. JMIR Formative Research. https://doi.org/10.2196/40139 |
73 |
Lekkas, D.*, Gyorda, J.A.*, Moen, E.L., & Jacobson, N.C. (2022). Using passive sensor data to probe associations of social structure with changes in personality: A synthesis of network analysis and machine learning. PLOS One. |
72 |
Gyorda, J.A.*, Nemesure, M.*, Price G.*, & Jacobson, N.C. (2022). Applying Ensemble Machine Learning Models to Predict Individual Response to a Digitally Delivered Worry Postponement Intervention. Journal of Affective Disorders. https://doi.org/10.1016/j.jad.2022.09.112 |
71 |
Jacobson, N.C., Arean, P., & Schueller, S.M. (2022). Mobile-phone based interventions for mental health show promise of effectiveness, but what does the evidence tell us about what needs to come next? PLOS Digital Health. |
70 |
Lekkas, D.*, Gyorda, J.A.*, & Jacobson, N.C. (2022). The Temporal Dynamics of Physical Activity-Mediated Emotional Regulation in Adolescents with Anorexia Nervosa and Healthy Controls: Investigating the Impact of Physical Activity on Self-Report Emotion with Wearable Technology and Lag-Ensemble Machine Learning. European Eating Disorders Review. https://doi.org/10.1002/erv.2949 |
69 |
Price, G.D.*, Heinz, M.V.*, Zhao, D.*, Nemesure, M.*, Ruan, F.*, & Jacobson, N.C. (2022). An Unsupervised Machine Learning Approach Using Passive Movement Data to Understand Depression and Schizophrenia. Journal of Affective Disorders. https://doi.org/10.1016/j.jad.2022.08.013 |
68 |
Price, G.D.,* Heinz, M.V.,* Nemesure, M.D.,* McFadden, J.,* Jacobson, N.C. (2022). Predicting Symptom Response and Engagement in a Digital Intervention Among Individuals with Schizophrenia and Related Psychoses. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2022.807116 |
67 |
Klein, R. J.,* Jacobson, N.C. & Robinson, M.D. (2022). A Psychological Flexibility Perspective on Well-Being Emotional Reactivity, Adaptive Choices, and Daily Experiences. Emotion. |
66 | Jacobson, N.C. & Feng, B.Y.* (2022). Digital Phenotyping of Generalized Anxiety Disorder: Using Artificial Intelligence to Accurately Predict Symptom Severity Using Wearable Sensors in Daily Life. Translational Psychiatry. |
65 | Nemesure, M.D.*, Streltzov, N., Schommer, L.M. Lekkas, D.*, Jacobson, N.C. & Bujarski, K.A. (2022). Predictive Modeling of Suicidal Ideation in Patients with Epilepsy. Epilepsia. |
64 | Greenberg JL, Jacobson NC, Hoeppner SS, Bernstein EE, Snorrason I, Schwartzberg A, Steketee G, Phillips KA, Wilhelm S. (2022). Early Response to Cognitive Behavioral Therapy for Body Dysmorphic Disorder as a Predictor of Outcomes. Journal of Psychiatric Research. |
63 | Zarate, D., Stavropoulos, V., Ball, M., de Sena Collier, G., Jacobson, N.C.(2022). Exploring the Digital Footprint of Depression: A PRISMA Systematic Literature Review of the Empirical Evidence. BMC Psychiatry. |
62 | Marsch, L. A. Chen, C., Adams, S.R., Asyyed, A., Does, M. B. Hassanpour, S., Hichborn, E., Jackson-Morris, M., Jacobson, N.C., Jones, H.K., Kotz, D., Lambert-Harris, CA., Li, Z., McLeman, B., Mishra, V., Stanger, C., Subramaniam, G., Wu, W., and Campbell, C.I. (2022). The feasibility and utility of harnessing digital health to understand clinical trajectories in medication treatment for Opioid Use Disorder: D-TECT Study Design and Methodological Considerations. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2022.871916 |
61 | Hart, A., Rais, D., Prestele, E. & Jacobson, N.C. (2022). Using Smartphone Sensor Paradata and Personalized Machine Learning Models to Infer Participants' Well-being: Ecological Momentary Assessment. Journal of Medical Internet Research (JMIR).https://doi.org/10.2196/34015 |
60 | Klein, R.J.,* Gyorda, J.A.*, & Jacobson, N.C. (2022). Anxiety, depression, and substance experimentation in childhood. PLOS One. https://doi.org/10.1371/journal.pone.0265239 |
59 | Heinz, M.V.*, Price, G.*, Ruan, F.*, Klein, R.J.*, Nemesure, M.*, Lopez, A.,* & Jacobson, N.C. (2022). Association of Selective Serotonin Reuptake Inhibitor Use With Abnormal Physical Movement Patterns as Detected Using a Piezoelectric Accelerometer and Deep Learning in a Nationally Representative Sample of Noninstitutionalized Persons in the US. JAMA Network Open. https://doi.org/10.1001/jamanetworkopen.2022.5403 |
58 | Klein, R.J.,* Nguyen, N.,* Gyorda, J.A.*, & Jacobson, N.C. (2022) Adolescent emotion regulation and future psychopathology: A prospective transdiagnostic analysis. Journal of Research on Adolescence. https://doi.org/10.1111/jora.12743 |
57 | Jacobson, N.C., Chen, W.*, Huang, R.* (2022) Standalone Apps for Anxiety and Depression Show Promising Early Efficacy: A Commentary on Meta-Analytic Results. Meta-Psychology. doi:https://doi.org/10.31234/osf.io/v48w9 |
56 | Fitzsimmons-Craft, E.E., Chan, W.S., Smith, A.C., Firebaugh, M., Fowler, L.A., DePietro, B., Topooco, N., Wilfley, D.E., Taylor, C.B., & Jacobson, N.C.(2022). Effectiveness of a chatbot for eating disorders prevention: A randomized clinical trial. International Journal of Eating Disorders. https://doi.org/10.1002/eat.23662 |
55 | Chan, W.W., Fitzsimmons-Craft, E.E., Smith, A.C., Firebaugh, M., Fowler, L.A., DePietro, B.; Topooco, N., Taylor, C.B., & Jacobson, N.C. (2022). Challenges in Designing a Mental Health Prevention Chatbot: Lessons Learned from the Field. Journal of Medical Internet Research (JMIR). https://doi.org/10.2196/28003 |
54 | Jacobson, N. C. & Bhattacharya, S.* (2021). Digital Biomarkers of Anxiety Disorder Symptom Changes Personalized Deep Learning Models Using Smartphone Sensors Accurately Predict Anxiety Symptoms from Ecological Momentary Assessments. Behaviour Research and Therapy. https://doi.org/10.1016/j.brat.2021.104013 |
53 | Lekkas, D.*, Gyorda, J.A.*, Price, G.D.*,Wortzman, Z.*, & Jacobson, N.C. (2021). The Language of the Times: Using the COVID-19 Pandemic to Assess the Influence of News Affect on Online Mental Health-Related Search Behavior across the United States. Journal of Medical Internet Research (JMIR). https://doi.org/10.2196/32731 |
52 | Ollier, J., Neff, S., Dworschak, C., Sejdiji, A., Santhanam, P., Keller, R., Xiao, G., Asisof, A., Rüegger, D., Bérubé, C., Hilfiker, L., Neff, J., Yao, J., Alattas, A., Varela-Mato, V., Pitkethly, A., Dolores Vara, M., Herrero, R., Mª Baños, R., Parada, C., Sundaram Agatheswaran, R., Villalobos, V., Clare Keller, O., Sze Chan, W., Mishra, V., Jacobson, N.C., Stanger, C., He, X., Von Wyl, V., Weidt, S., Haug, S., Patrick Schaub, M., Kleim, B., Barth, J., M. Witt, C., Scholz, U., Fleisch, E., von Wangenheim, F., Tudor Car, L., Müller-Riemenschneider, F., Hauser-Ulrich, S., Núñez Asomoza, A., Salamanca-Sanabria, A., Louise Mair, J., & Kowatsch, T., (2021) Elena+ Care for COVID-19, A Pandemic Lifestyle Care Intervention: Intervention Design and Study Protocol. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2021.625640 |
51 | Lekkas, D.*, Price, G.* & Jacobson, N.C. (2021). Using Smartphone App Use and Lagged-Ensemble Machine Learning for the Prediction of Work Fatigue and Boredom. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2021.107029 |
50 | Lekkas, D.*, Price, G.*, McFadden, J.* & Jacobson, N. C. (2021). The Application of Machine Learning to Online Mindfulness Intervention Data: A Primer and Empirical Example in Compliance Assessment. Mindfulness. https://doi.org/10.1007/s12671-021-01723-4 |
49 | Teepe, G.W., Fonseca, A.D., Kleim, B., Jacobson, N.C., Sanabria, A.S., Car, L.T, Fleisch, E., & Kowatsch, T. (2021). Just-in-time Adaptive Mechanisms of Popular Mobile Applications for Individuals with Depression: Systematic Review. Journal of Medical Internet Research (JMIR). https://doi.org/10.2196/29412 |
48 | Lekkas, D.*, Klein, R. J.*, & Jacobson, N.C. (2021). Predicting Acute Suicidal Ideation on Instagram Using Ensemble Machine Learning Models. Internet Interventions. https://doi.org/10.1016/j.invent.2021.100424 |
47 | Jacobson, N.C., Evey, K.J., Wright, A.G.C, & Newman, M.G. (2021). Integration of Discrete and Global Structures of Affect Across Three Large Samples: Specific Emotions Within-Persons and Global Affect Between-Persons. Emotion. https://doi.org/10.1037/emo0001022 |
46 | Newman, M. G., Kanuri, N., Rackoff, G., Jacobson, N.C., Jones, M., & Taylor, C. B. (2021). A Randomized Controlled Feasibility Trial of Internet-Delivered Guided Self-Help for Generalized Anxiety Disorder (GAD) Among University Students in India. Psychotherapy, 58, 591-601. https://doi.org/10.1037/pst0000383 |
45 | Lekkas, D.* & Jacobson, N.C. (2021). Using Artificial Intelligence and Longitudinal Location Data to Differentiate Persons who Develop Posttraumatic Stress Disorder Following Childhood Trauma. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-89768-2 |
44 | Mack, D., DaSilva, A., Rogers, C., Hedlund, E. L., Murphy, E. I., Vojdanovski, V., Plomp, J., Wang, W., Nepal, S., Holtzheimer, P.E., Wagner, D.D., Jacobson, N.C., Meyer, M.L., Campbell, A.T., & Huckins, J. F. (2021). Mental Health and Behavior of College Students in the COVID-19 Pandemic: A Longitudinal Mobile Smartphone and Ecological Momentary Assessment Study - Part II. Journal of Medical Internet Research (JMIR). https://doi.org/10.2196/28892 |
43 | Yom-Tov, E., Lekkas, D.*, & Jacobson, N. C.. (2021). Association of COVID19-induced Anosmia and Ageusia with Depression and Suicidal Ideation. Journal of Affective Disorders Reports. https://doi.org/10.1016/j.jadr.2021.100156 |
42 | Sofis, M.J., Lemley, S.M., Jacobson, N.C., & Budney, A.J. (2021). Initial Evaluation of Domain-Specific Episodic Future Thinking on Delay Discounting and Cannabis Use. Experimental and Clinical Psychopharmacology. https://doi.org/10.1037/pha0000501 |
41 | Shin, K., Newman, M.G., & Jacobson, N.C. (2021). Emotion Network Density as a Potential Clinical Marker: Comparison of Ecological Momentary Assessment and Daily Diary. British Journal of Clinical Psychology. https://doi.org/10.1111/bjc.12295 |
40 | Fitzsimmons-Craft, E.E., Taylor, C.B., Newman, M.G., Zainal, N.H., Rojas-Ashe, E., Lipson, S.K., Firebaugh, M., Ceglarek, P., Topooco, N., Jacobson, N.C., Graham, A.K., Kim, H.M., Eisenberg, D., & Wilfley, D.E. (2021). Harnessing mobile technology to reduce mental health disorders in college populations: A randomized controlled trial study protocol. Contemporary Clinical Trials. https://doi.org/10.1016/j.cct.2021.106320 |
39 | Barr, P.J., Ryan, J, & Jacobson, N.C. (2021). Precision Assessment of COVID-19 Phenotypes Using Large-Scale Clinic Visit Audio Recordings. Journal of Medical Internet Research (JMIR).https://doi.org/10.2196/20545 |
38 | Jacobson, N.C., Lekkas, D.*, Huang, R.*, & Thomas, N.* (2021). Deep Learning Paired with Wearable Passive Sensing Data Predicts Deterioration in Anxiety Disorder Symptoms across 17-18 Years. Journal of Affective Disorders, 282, 104-111. https://doi.org/10.1016/j.jad.2020.12.086 |
37 | Nemesure, M.D*, Heinz, M.V.*, Huang, R.* & Jacobson, N.C. (2021). Predictive Modeling of Psychiatric Illness using Electronic Medical Records and a Novel Machine Learning Approach with Artificial Intelligence. Scientific Reports. https://doi.org/10.1038/s41598-021-81368-4 |
36 | Jacobson, N.C. & Nemesure, M.D.* (2021). Using Artificial Intelligence to Predict Change in Depression and Anxiety Symptoms in a Digital Intervention: Evidence from A Transdiagnostic Randomized Controlled Trial. Psychiatry Research. https://doi.org/10.1016/j.psychres.2020.113618 |
35 | Meyer, N., Joyce, D. W., Karr, C., Dijk, D.J., Jacobson, N.C. & MacCabe, J. (2020). The Temporal Dynamics of Sleep Disturbance and Psychopathology in Psychosis: A Digital Sampling Study. Psychological Medicine. https://doi.org/10.1017/S0033291720004857 |
34 | Jacobson, N.C., Yom-Tov, E., Lekkas, D.*, Heinz, M.*, Liu, L.*, Barr, P.J. (2020). Impact of Online Mental Health Screening Tools on Help-Seeking, Care Receipt, and Suicidal Ideation and Suicidal Intent: Evidence from Internet Search Behavior in a Large U.S. Cohort. Journal of Psychiatric Research. https://doi.org/10.1016/j.jpsychires.2020.11.010 |
33 | Dosovitsky, G., Pineda, B., Chang, C., Jacobson, N.C. & Bunge, E.L. (2020). Artificial Intelligence Chatbot for Depression: Descriptive Study of Usage. JMIR Formative Research, 4, e17065. https://doi.org/10.2196/17065 |
32 | Newman, M. G., Jacobson, N.C., Rackoff, G. N., Jones, M., & Taylor, C. B. (2020). A randomized controlled trial of a smartphone-based application for the treatment of anxiety. Psychotherapy Research. https://doi.org/10.1080/10503307.2020.1790688 |
31 | Sofis, M. J., Pike, C.K, Jacobson, N.C., Liu, L.*, Budney, A.J., Borodovsky, J.T. (2020). Sifting Through the Weeds: Differential Relationships Between Cannabis Use Frequency Measures and Delay Discounting. Addictive Behaviors. https://doi.org/10.1016/j.addbeh.2020.106573 |
30 | Jacobson, N.C. & Chung, Y.J.* (2020). Passive Sensing of Prediction of Moment-to-Moment Depressed Mood among Undergraduates with Clinical Levels of Depression Sample using Smartphones. Sensors, 20, 3572. http://dx.doi.org/10.3390/s20123572 |
29 | Nelson, B.W., Low, C., Jacobson, N.C., Areán, P., Torous, J., & Allen, N.B.(2020). Guidelines for Wrist-Worn Consumer Wearables Assessment of Heart Rate in Biobehavioral Research. npj Digital Medicine, 3, 90. https://doi.org/10.1038/s41746-020-0297-4 |
28 | Jacobson, N.C., Lekkas, D.*, Price, G.P.*, Heinz, M.V.*, Song, M.*, O’Malley, A.J. & Barr, P.J. (2020). Flattening the Mental Health Curve: COVID-19 Stay-at-Home Orders Are Associated With Alterations in Mental Health Search Behavior in the United States, JMIR Mental Health, 7, e19347. http://dx.doi.org/10.2196/19347 |
27 | Lord, K.A.*, Jacobson, N.C., Suvak, M., & Newman, M.G. (2020). Social Criticism Moderates the Relationship Between Anxiety and Depression 10 Years Later. Journal of Affective Disorders, 1, 15-22. http://dx.doi.org/10.1016/j.jad.2020.05.030 |
26 | Jacobson, N.C., Summers B., & Wilhelm, S. (2020). Digital Biomarkers of Social Anxiety Symptom Severity: Digital Phenotyping using Passive Smartphone Sensors. Journal of Medical Internet Research (JMIR), 22, e16875. http://dx.doi.org/10.2196/16875 |
25 | Jacobson, N.C. Bentley, K.H., Walton, A., Wang, S.B., Fortgang, R.G., Millner, A.J. Coombs, G.C., Rodman, A.M., Coppersmith, D.D.L. (2020). Ethical Dilemmas Created by Mobile Health and Machine Learning within Research in Psychiatry. Bulletin of the World Health Organization, 98, 270-276. http://dx.doi.org/10.2471/BLT.19.237107 |
24 | Wilhelm, S., Weingarden, H., Ladis, I. Braddick, V., Shin, J. & Jacobson, N.C.(2020). Cognitive Behavioral Therapy in the Digital Age: Presidential Address. Behavior Therapy, 1, 1-14. http://dx.doi.org/10.1016/j.beth.2019.08.001 |
23 | Jacobson, N.C. & O'Cleirigh, C.M. (2019). Objective Digital Phenotypes of Worry Severity, Pain Severity, and Pain Chronicity in Persons Living with HIV. The British Journal of Psychiatry.http://dx.doi.org/10.1192/bjp.2019.168 |
22 | Jacobson, N.C., Weingarden, H., & Wilhelm, S. (2019). Using Digital Phenotyping to Accurately Detect Depression Severity. Journal of Nervous and Mental Disease, 207, 893-896. http://dx.doi.org/10.1097/NMD.0000000000001042 |
21 | Jacobson, N.C., Weingarden, H., & Wilhelm, S. (2019). Digital Biomarkers of Mood Disorders and Symptom Change. Nature Partner Journal (npj): Digital Medicine, 2, 1-2. http://dx.doi.org/10.1038/s41746-019-0078-0 |
20 | Newman, M G., Jacobson, N.C., Zainal, N.H., Shin, K.E., Szkodny, L.E., Sliwinski, M.J. (2019). The effects of worry in daily life: An ecological momentary assessment study supporting the tenets of the Contrast Avoidance Model. Clinical Psychological Science, 7, 794-810.http://dx.doi.org/10.1177/2167702619827019 |
19 | Jacobson, N.C., Chow, S.M., & Newman, M.G. (2019). The Differential Time-Varying Effect Model (DTVEM): A tool for diagnosing optimal measurement and modeling intervals in intensive longitudinal data. Behavior Research Methods, 51, 295-315. http://dx.doi.org/10.3758/s13428-018-1101-0 |
18 | Jacobson, N.C. & Roche, M.J. (2018). Current evolutionary adaptiveness of anxiety: Extreme phenotypes of anxiety predict increased fertility across multiple generations. Journal of Psychiatric Research, 106, 82-90.http://dx.doi.org/10.1016/j.jpsychires.2018.10.002 |
17 | Roche, M.J., Jacobson, N.C., & Phillips. J. (2018). Expanding the validity of the Level of Personality Functioning Scale Observer-Report and Self-Report versions across psychodynamic and interpersonal paradigms. Journal of Personality Assessment, 100, 571-580. http://dx.doi.org/10.1080/00223891.2018.1475394 |
16 | Ji, L., Chow, S.M., Schermerhorn, A.C., Jacobson, N.C. & Cummings, M. (2018). Handling missing data in the modeling of intensive longitudinal data. Structural Equation Modeling, 25, 715-736. http://dx.doi.org/10.1080/10705511.2017.1417046 |
15 | Roche, M.J. & Jacobson, N.C. (2018). Elections have consequences for student mental health: An accidental daily diary study. Psychological Reports. 122, 451–464. http://dx.doi.org/10.1177/0033294118767365 |
14 | Newman, M.G., LaFreniere, L.S., & Jacobson, N.C. (2018). Relaxation-induced anxiety: Effects of peak and trajectories of change on treatment outcome for generalized anxiety disorder. Psychotherapy Research, 68, 616-629. http://dx.doi.org/10.1080/10503307.2016.1253891 |
13 | Jacobson, N.C. & Newman. M.G. (2017). Anxiety and depression as bidirectional risk factors for one another: A meta-analysis of longitudinal studies. Psychological Bulletin, 143, 1155-1200. http://dx.doi.org/10.1037/bul0000111 (Winner of the College of the Liberal Arts Raymond Lombra Graduate Student Award for the Excellence in Research in the Social Sciences, Pennsylvania State University; Winner Best Research Paper Award in Psychology, Pennsylvania State University). |
12 | Frank, B., Jacobson, N.C., Hurley, L. & McKay, D (2017). A theoretical and empirical modeling of anxiety integrated with RDoC and temporal dynamics. Journal of Anxiety Disorders, 51, 39-46.http://dx.doi.org/10.1016/j.janxdis.2017.09.002 |
11 | Jacobson, N.C., Lord, K.A.*, & Newman, M.G. (2017). Perceived emotional social support in bereaved spouses mediates the relationship between anxiety and depression. Journal of Affective Disorders, 211, 83-91.http://dx.doi.org/10.1016/j.jad.2017.01.011 |
10 | Roche, M.J., Jacobson, N.C., & Roche, C.A. (2017). Teaching strategies for personality assessment at the undergraduate level. Journal of Personality Assessment, 99, 117-125. http://dx.doi.org/10.1080/00223891.2016.1147450 |
9 | Jacobson, N.C. (2016). Current evolutionary adaptiveness of psychiatric disorders: Fertility rates, parent−child relationship quality, and psychiatric disorders across the lifespan. Journal of Abnormal Psychology, 125, 824-839. http://dx.doi.org/10.1037/abn0000185 |
8 | Newman, M.G., Jacobson, N.C., Erickson, T.M., & Fisher, A.J. (2016). Interpersonal problems predict differential response to cognitive versus behavioral treatment in a randomized controlled trial. Behavior Therapy, 48, 56-68. http://dx.doi.org/10.1016/j.beth.2016.05.005 |
7 | Roche, M.J., Jacobson, N.C., & Pincus, A.L. (2016). Using repeated daily assessments to uncover oscillating patterns and temporally-dynamic triggers in structures of psychopathology: Applications to the DSM–5 alternative model of personality disorders. Journal of Abnormal Psychology, 125, 1090-1102. http://dx.doi.org/10.1037/abn0000177 |
6 | Jacobson, N.C., Newman, M.G., & Goldfried, M.R. (2016). Clinical feedback about empirically supported treatments for obsessive-compulsive disorder. Behavior Therapy, 47, 75-90. http://dx.doi.org/10.1016/j.beth.2015.09.003 |
5 | Jacobson, N. C. & Newman, M.G. (2016). Perceptions of close and group relationships mediate the relationship between anxiety and depression over a decade later. Depression and Anxiety, 33, 66-74.http://dx.doi.org/10.1002/da.22402 |
4 | Newman, M.G., Castonguay, L.G., Jacobson, N.C. & Moore, G. (2015). Adult attachment as a moderator of treatment outcome for GAD: Comparison between CBT plus supportive listening and CBT plus interpersonal and emotional processing therapy. Journal of Consulting and Clinical Psychology, 83, 915-925. http://dx.doi.org/10.1037/a0039359 |
3 | Jacobson, N.C., & Newman, M.G. (2014). Avoidance mediates the relationship between anxiety and depression over a decade later. Journal of Anxiety Disorders, 28, 437-445. http://dx.doi.org/10.1016/j.janxdis.2014.03.007 |
2 | Jacobson, N.C., Kramer, S.L., Tharp, A.G., Harmon, K.A., Cejas, G.P., & Costa, S.C. (2013). Deficits of encoding in hypnosis: A result of altered state of awareness. American Journal of Clinical Hypnosis, 55, 360-369. http://dx.doi.org/10.1080/00029157.2012.696286 |
1 | Jacobson, N.C. Kramer, S., Tharp, A., Costa, S., & Hawley, P. (2011). The effects of encoding under hypnosis and post-hypnotic suggestion on academic performance. American Journal of Clinical Hypnosis, 53, 247-254. http://dx.doi.org/10.1080/00029157.2011.10404354 (Winner: Clark L. Hull Award for Scientific Excellence in Writing on Experimental Hypnosis from the American Journal of Clinical Hypnosis). |