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Infectious prions containing the pathogenic conformer of the
mammalian prion protein (PrP°) can be produced de novo from
a mixture of the normal conformer (PrP€) with RNA and lipid mol-
ecules. Recent reconstitution studies indicate that nucleic acids are
not required for the propagation of mouse prions in vitro, suggest-
ing the existence of an alternative prion propagation cofactor in
brain tissue. However, the identity and functional properties of
this unique cofactor are unknown. Here, we show by purification
and reconstitution that the molecule responsible for the nuclease-
resistant cofactor activity in brain is endogenous phosphatidyleth-
anolamine (PE). Synthetic PE alone facilitates conversion of purified
recombinant (rec)PrP substrate into infectious recPrP*¢ molecules.
Other phospholipids, including phosphatidylcholine, phosphatidyl-
serine, phosphatidylinositol, and phosphatidylglycerol, were un-
able to facilitate recPrP>° formation in the absence of RNA. PE
facilitated the propagation of PrP5¢ molecules derived from all four
different animal species tested including mouse, suggesting that
unlike RNA, PE is a promiscuous cofactor for PrP> formation in vi-
tro. Phospholipase treatment abolished the ability of brain homog-
enate to reconstitute the propagation of both mouse and hamster
PrP>¢ molecules. Our results identify a single endogenous cofactor
able to facilitate the formation of prions from multiple species in
the absence of nucleic acids or other polyanions.

PrP | scrapie

Prions are mechanistically unique infectious agents that con-
tain a misfolded, membrane-bound, glycoprotein (PrP*°)
formed by the conformational change of a host-encoded con-
former (PrP€) (1). Conversion of PrP€ into PrP* is the central
event in the formation of infectious prions, but the molecular
mechanism underlying conformational change remains poorly
understood. In particular, the number and identity of endoge-
nous factors other than PrP required for prion formation has not
been determined (2).

Cell culture and biochemical studies have implicated several
classes of macromolecules such as GAGs, nucleic acids, proteins,
and lipids as potential cofactors for prion formation (3). Re-
constitution experiments with defined substrates (in which puri-
fied PrP molecules are mixed with Prnp”® brain homogenate or
purified cofactors that facilitate its conversion to PrP%) have
suggested that the conversion mechanism may be relatively
simple, requiring only a few components (4, 5). Wild-type
hamster prions possessing specific infectivity levels similar to
those associated with natural scrapie have been formed de novo
by using a defined mixture of purified native PrP<, copurified
lipid, and RNA molecules (4), and infectious prions have also
been formed de novo from bacterially expressed, recombinant
PrP substrate in a reaction facilitated by synthetic 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphoglycerol (POPG) and RNA mole-
cules (5, 6). In summary, infectious prions have not yet been
produced either with a single cofactor or in the absence of
nucleic acids.

www.pnas.org/cgi/doi/10.1073/pnas.1204498109

Recent studies using reconstitution experiments with purified
PrP€ molecules have shown that polyanions such as RNA molecules
facilitate the propagation of hamster but not mouse prions (7).
Furthermore, these experiments showed that Prnp®° (PrP knock-
out) mouse brain homogenate contains a heat-stable activity ca-
pable of stimulating mouse prion propagation in vitro. Therefore,
we sought to identify the novel molecule(s) responsible for this
cofactor activity by biochemical purification using the reconstitution
of mouse prion propagation as an assay.

Results

Preliminary studies indicated that the cofactor activity responsible
for facilitating mouse PrPS propagation in Prnp”® brain homo-
genates was membrane bound and insoluble in the nonionic de-
tergent Triton X-100 (Fig. S1, Upper). To solubilize the cofactor,
we conducted a detergent screen, and found that the cofactor
activity could be completely solubilized with n-octyl glucoside
(NOG) (Fig. S1, Lower). We then exploited the heat , protease,
and nuclease sensitivity of the cofactor activity (7) to develop
a purification protocol from NOG-solubilized Prnp”® mouse
brain membranes as described in Materials and Methods.

To determine the substrate specificity of the endogenous co-
factor, we tested the ability of the purified preparation to facilitate
propagation of both mouse and hamster prions in reconstituted
serial protein misfolding cyclic amplification (sSPMCA) reactions
by using immunopurified PrP€ substrates. Unlike RNA, which
facilitates in vitro propagation of hamster Sc237 but not mouse
RML prions (7), our preparation of purified cofactor activity
facilitates the propagation of both Sc237 and RML prions (Fig.
14), suggesting that the endogenous cofactor may interact with
a wider range of prions than RNA. In addition, the cofactor
preparation also facilitates the propagation of deer and vole PrP5
in the reconstituted SPMCA reactions (Fig. S2).

Wang et al. showed that mouse PrP recombinantly produced
in Escherichia coli (recPrP) is a suitable substrate for sSPMCA
reactions facilitated by synthetic phosphatidylglycerol (PG) and
total liver RNA cofactors (5). We tested the ability of our co-
factor preparation to enable the conversion recPrP in sSPMCA
reactions without RNA. The results show that the cofactor
preparation facilitates conversion of recPrP into an autocatalytic,
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Characterization of cofactor preparation. Western blots of reconstituted sPMCA reactions probed with 6D11 anti-PrP mAb. (A) Species specificity.

Immunopurified native mouse PrP¢ substrate initially seeded with Me7 prions (Upper) or hamster PrP¢ substrate seeded Sc237 prions (Lower) were sup-
plemented with either 50 pg/mL total rat brain RNA (Left) or a purified cofactor (Right). (B and C) Saponification and PLC treatment. Saponified and
phospholipase-treated cofactor samples were used to reconstitute sSPMCA reactions with recPrP substrate seeded with recPrP> template, as indicated. (D)
Silica chromatography fractionation. recPrP substrate was supplemented with normal-phase chromatographic fractions and subjected to sPMCA reactions
seeded with recPrP* template, as indicated. -PK, samples not subjected to proteinase K digestion; all other samples were proteolyzed.

protease-resistant conformation with an ~18-kDa core (Fig.
1B, Top).

The membrane association and detergent solubility of the
cofactor activity, and the physical appearance of the purified
preparation suggested that the endogenous cofactor might be
a lipid molecule. To test this hypothesis, we examined the effect
of saponification on cofactor activity. Our experiments showed
that saponification by treatment with alkali at 95 °C destroyed
the ability of the cofactor preparation to facilitate formation and
propagation of recPrP* (Fig. 1B, Lower). Interestingly, in these
sPMCA reactions, a different autocatalytic conformer with
a ~14-kDa protease-resistant core emerged after two rounds
(Fig. 1B, Lower). We used recPrP as substrate for all subsequent
experiments because it could be produced more easily than pu-
rified native PrP© and also because purified PrP€ contains stoi-
chiometric amounts of copurified lipids that could confound our
reconstitution experiments (4).

Within brain membranes, phospholipids are the major class of
saponafiable compounds. To test whether one or more phos-
pholipids might be responsible for the cofactor activity in our
purified preparation, we treated the preparation with phospho-
lipase C (PLC), an enzyme that specifically cleaves phospholipids
at the bond between the glycerol backbone and phosphate. Our
results indicated that PLC treatment inhibited the propagation
of recPrP, indicating that the cofactor preparation contains an
essential phospholipid (Fig. 1C).

Next, we used normal phase chromatography to separate our
cofactor preparation into three fractions of increasing polarity,
enriched in neutral lipids, sphingolipids, and phospholipids, re-
spectively. This analysis revealed that the cofactor activity was
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only present in the most polar MeOH fraction, into which
phospholipids partition (Fig. 1D).

We performed *'P-NMR to analyze the phospholipid compo-
sition of our purified preparation quantitatively. The results
showed that our preparation contains phosphatidylethanolamine
(PE), lysoPE, phosphatidylcholine (PC), lyso PC, and phosphati-
dylinositol (PI) (Table 1). PE is the most abundant phospholipid in
our preparation, accounting for ~50% of the phospholipid in the
sample, whereas phosphatidylserine (PS), phosphatidylglycerol
(PG), and sphingolipids were not detected. Flow infusion mass
spectroscopy (MS) revealed the presence of multiple size species
for each phospholipid class detected by *'P-NMR, indicating
heterogeneity in the composition of fatty acid esters for each head
group (Tables S1-S6). MS analysis also revealed the presence of
trace amounts of PS not detected by *'P-NMR and confirmed the
absence of sphingolipids and PG.

To see which of the components present in the purified
preparation is responsible for cofactor activity, we tested com-
mercial preparations of each phospholipid identified by *'P-

Table 1. 3'P-NMR analysis of purified cofactor preparation

Compound Concentration, mM Nominal MW Amount %
PI 0.301 884 43
Lyso PC 0.603 519 5.0
Lyso PE 0.413 495 33
PC 2.865 777 36.0
PE 4.122 770 51.3
MW, molecular weight.
Deleault et al.
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Fig. 2. Effect of various phospholipids on prion formation. Western blots
showing three-round sPMCA reactions using recPrP substrate and seeded
with recPrP*° template, supplemented with various commercial preparations
of purified and synthetic phospholipids at 2.5 mM final concentration,
as indicated.

NMR. Our results showed that brain-derived PE robustly facil-
itates SPMCA reactions, whereas brain-derived PC, liver-derived
PIL, lyso PE, and lyso PC do not (Fig. 2). Previous work indicated
that anionic phospholipids could influence PrP conformation
and that the anionic phospholipid POPG, a synthetic form of
PG, could facilitate the formation of recPrP*° in the presence of
liver RNA (5). Therefore, despite the lack of PG and PS in our
purified preparation, we also tested these anionic phospholipids
for their ability to facilitate SPMCA reactions in the absence of
RNA. Unlike PE, neither PG (including POPG) nor PS dis-
played stimulatory activity in these assays (Fig. 2 and Fig. S3).

Brain-derived PE is a heterogeneous mixture (with respect to
fatty acid composition) purified by HPLC from a mammalian
source. We next tested whether synthetic C18 (plasmalogen) 18:1
PE (we chose this compound from among various commercially
available synthetic PE phospholipids because it offered a combi-
nation of good chemical stability and detergent solubility) could
support sSPMCA propagation of recPrPS® molecules. Our results
(Fig. 34) show that synthetic PE successfully propagates serial
recPrPS¢ propagation at concentrations >100 uM (Fig. S4). More-
over, the recPrP>° molecules produced by serial propagation with
synthetic PE are infectious, as judged by bioassay. Intracerebral
inoculation of samples that had been serially propagated for 18
rounds (with a 1:10 seeding ratio in each round) into wild-type
mice caused classical signs of scrapie in 100% of the inoculated
animals after 381 + 11 d, including shaking, ataxia, and impaired
movement, whereas mice inoculated with control inocula
remained asymptomatic (Table 2). The diagnosis of scrapie in
symptomatic mice was confirmed by neuropathological analysis
showing spongiform degeneration (Fig. 3B), Western blot anal-
ysis showing the presence of PrP5¢ in the brains (Fig. 3C), and
successful serial passage into normal C57BL hosts with a scrapie
incubation period of 175 + 4 d (Table 2).

Finally, we tested whether PE and other phospholipids are
essential components for PrPS® propagation in crude brain
homogenates. We treated a crude homogenate of Prnp®° brain
with PLC, inactivated the enzyme by chelation, and tested the

Deleault et al.
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Fig. 3. Generation of infectious prions with synthetic plasmalogen PE. (A)
Western blot showing 18-round sPMCA reactions containing only recPrP and
1 mM synthetic plasmalogen PE seeded with recPrP* in the first round. (B)
Hematoxylin and eosin stained microscopic section of hypothalamus from
mice inoculated with final sSPMCA product of experiment shown in A, un-
seeded substrate mixture not subjected to sSPMCA, or seeded mock sPMCA
reactions in control buffer, as indicated. (C) Western blot to detect pro-
teinase K-resistant PrP°¢ in brain homogenates of inoculated mice. Samples
from three different animals inoculated with the same preparation of
recPrP* (seeded + PE) are shown.

treated homogenate for its ability to reconstitute both hamster
and mouse PrPS propagation. Our results show that PLC
treatment abolishes the ability of crude brain homogenate to
facilitate PrPS° propagation for both species, suggesting that one
or more phospholipids are essential cofactors for PrP> forma-
tion in vitro (Fig. 4).

Discussion

In this manuscript, we have identified PE as an endogenous
cofactor that by itself can facilitate prion propagation using PrP
molecules from multiple animal species. Previous studies have
shown that the anionic phospholipids PS and POPG promote
PrP conformational change (8, 9) and that POPG can facilitate
the formation of infectious mouse prions in the presence of RNA
molecules (5). Surprisingly, our reconstitution studies indicate
that anionic phospholipids (PI, PS, and PG) are unable to fa-
cilitate prion propagation in the absence of RNA molecules (the
absence of RNA molecules in our experiments was assured by
the use of pure recPrP and synthetic phospholipid substrates,
and the inclusion of a nuclease digestion step in the cofactor
purification protocol). The ability of PE to serve as a solitary
cofactor for prion propagation in vitro suggests that it may in-
teract with PrP in a different way than anionic phospholipids.

PNAS Early Edition | 3 of 6
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Fig. 4. Effect of PLC treatment on PrP*¢ formation in brain homogenates.

PLC-treated and control crude Prnp®® brain homogenates were treated as

described in Materials and Methods and used to reconstitute purified native
hamster or mouse PrP¢ substrate in duplicate three-round sPMCA reactions
seeded with either hamster Sc237 or mouse Me7 prions, as indicated. The
control samples were not exposed to PLC, but otherwise mock processed
together with the experimental samples (i.e., incubated with ZnCl2, dia-
lyzyed, and exposed to EDTA).

Consistent with this hypothesis, PE as a solitary cofactor facili-
tates a higher percentage conversion of recPrP substrate into
protease-resistant PrP product than the combination of POPG
plus RNA (Fig. S5). Also, unlike POPG, PE does not render
recPrP insoluble before conversion to PrPS° (Fig. S6).

Unlike RNA, which facilitates PrP5¢ propagation in some an-
imal species [including hamster (10, 11) and sheep (12)] but not
others (including mouse and vole; ref. 7), PE facilitated propa-
gation of PrPS° from all four species tested, including hamster
and deer. Moreover, our enzyme treatment/reconstitution studies
indicate that one or more phospholipids play an essential role for
the propagation of both hamster and mouse PrPS® molecules in
brain homogenates, whereas RNA is not required for mouse
PrP5° propagation. Taken together, these results suggest that PE
is a highly promiscuous prion cofactor, whereas structural poly-
anions such as RNA may interact with species-specific PrP
sequences, possibly to facilitate the formation of conformation-
ally stable prion strains, as suggested by Gonzalez-Montalban
et al. (11). The identification of structurally and functionally di-
vergent cofactors in vitro suggests that different classes of en-
dogenous molecules may serve to facilitate the propagation of
different prion strains in vivo.

A prior study has shown that modest level of hamster prion
infectivity can be propagated in sSPMCA reactions by using pu-
rified recPrP alone, i.e., without deliberate addition of lipid or
RNA molecules (13). However, the sPMCA conditions of Kim
et al. (13) included the synthetic anionic detergent SDS, which
may serve as an imperfect surrogate for naturally occurring co-
factor molecules. The current study provides evidence that
a naturally occurring molecule (PE) can stimulate the seeded
conversion of recPrP into infectious prions.

Although we are unable to test by experimental manipulation
whether PE or other phospholipids are required for in prion
formation in vivo because membrane lipid levels are tightly
regulated in cells, several lines of evidence suggest that brain-

derived prions may contain essential polar lipids. (i) The specific
infectivity of purified prion rods is increased 100-fold upon re-
constitution into phospholipid liposomes (14). (ii) Prions are
more easily inactivated by heat in the presence of fat rather than
in water (15). (iii) Polar organic solvents that are able to extract
polar lipids such 2-choroethanol inactivate prions, whereas
nonpolar solvents such as hexane do not (16, 17). (iv) Variations
in the strength of interaction between PrP and phospholipids
correlate with differences in the thermostability of various prion
strains (18, 19). (v) Radio inactivation studies suggest the pres-
ence of essential lipid molecules within infectious prions (20).
It is interesting to speculate that neuronal depletion of PE or
another essential cofactor during the process prion formation
could also mediate neurotoxicity, a process whose rate is appar-
ently proportional to PrP€ expression levels rather than infectious
titer (21, 22). The rate of cofactor consumption during the
asymptomatic phase of the disease would be proportional to the
rate at which new PrP® substrate molecules were produced in
infected neurons. In this scenario, it would not be necessary to
invoke the induction of a neurotoxic PrP species to explain how
PrP€ to PrP5 conversion causes cell death (22). It will be intriguing
to see how cofactor molecules participate in the pathogenesis of
human prion diseases, and other diseases in which protein mis-
folding appears to spread through the central nervous system (23).

Materials and Methods

Reagents. The Sc237 and Me7 hamster prion strains used in this study were
originally obtained from Stanley Prusiner (University of California, San
Francisco, CA). Samples of recPrP* used as seed for sPMCA reactions with
recPrP substrate was originally produced de novo by one of us (F.W.) as
described (5) and subsequently propagated with purified cofactor or syn-
thetic PE by N.R.D. and J.R.P. The pET-22b(+) expression plasmid (69744),
Overnight Express Autoinduction System (71300-3), Bug Buster 10x plus
Lysonase Kit (71370), and Ni-NTA His-Bind Superflow Resin (70691) were all
purchased from EMD Chemicals. Sep-Pak Classic C18 cartridges were pur-
chased from Waters Corporation. Micrococcal (S7) nuclease (107921) was
purchased from Roche. Thermolysin (88303) and PLC, type V from Bacillus
cereus (P4014) were both purchased from Sigma. Brain PE (840022P), PC
(840053P), and PS (840032P); liver PI (840042P); Egg PG (841138P); synthetic
plasmalogen PE (852758P), lyso PE (856705P), and lyso PC (855675P) were all
purchased from Avanti Polar Lipids.

PrP¢ Substrate and PrP27-30 Preparations. Native mouse and hamster PrP®
substrates were immunopurified from normal rodent brains as described (7).
PrP27-30 preparations were prepared from scrapie-infected brains as de-
scribed (4).

Recombinant MoPrP Expression and Purification. Amplified DNA sequences
coding for mouse PrP 23-231 were ligated into the pET-22b(+) expression
vector (EMD Chemicals) and sequences verified. The expression vector was
then transformed into E. coli Rosetta Cells (EMD Chemicals). Cells were
grown overnight in 1 L of LB (5 g of Yeast Extract, 10 g of Bacto Tryptone,
and 10 g of NaCl) supplemented with the Overnight Express Auto-induction
System (EMD Chemicals). The next day, the cells were centrifuged at 8,000 x
g for 10 min and the supernatant was discarded. Pellets were resuspended in
a solution of 1x Bug Buster and 10 pL of Lysonase (EMD Chemicals) con-
taining EDTA-free Complete protease inhibitors (Roche). Cells were then
incubated on ice and lysed by using intermittent sonication for 20 min. The
lysate was centrifuged at 16,000 x g for 20 min and washed twice with 0.1x

Table 2. Transmission of in vitro-generated recombinant prions to normal C57BL mice

Inoculum n/ng IP,* days
Eighteen-round sPMCA product of recPrP + plasmalogen PE mixture originally seeded with recPrP* 8/8 381 + 11
Eighteen-round sPMCA product of buffer control mixture originally seeded with recPrP> 0/4 >530
Unseeded recPrP + plasmalogen PE mixture 0/4 >530
Serial passage of animals infected with plasmalogen PE-recPrP* prions 8/8 175 + 4

*Mean incubation period (IP) of scrapie sick animals + SE. The samples of recPrP* used to seed sSPMCA reactions was generated

spontaneously as described (2).
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Bug Buster. The resulting inclusion bodies were solubilized by using 8 M
guanidine HCl and physical agitation, and insoluble material was removed by
centrifugation at 8,000 x g for 15 min. PrP was then purified as described (5).

Cofactor Preparation. All centrifugation was done at 4 °C unless otherwise
noted. A 10% (wt/vol) brain homogenate was made by processing 0.5 g of
normal mouse brain in 4.5 mL of 20 mM Mops at pH 7.0 and 150 mM NacCl
with a Potter homogenizer. Debris was removed by centrifugation for 30 s at
200 x g. The postnuclear supernatant was centrifuged for 30 min at 10,000 x
g. and the resulting pellet was rehomogenized in 4.5 mL of 20 mM Mops at
pH 7.0, 150 mM NaCl containing 3% (wt/vol) NOG (Anatrace), and incubated
at room temperature for 30 min. Next, the homogenate was centrifuged at
100,000 x g for 60 min. The resulting supernatant was adjusted to 2 mM
CaCl, and 150 U/mL S7 nuclease (Roche) and incubated at 37 °C for 30 min by
using an end-over-end rotator. Thermolysin (Sigma) was added at a final
concentration of 25 pg /mL, and the sample was incubated at 70 °C for 60 min
with intermittent mixing. Next, the sample was cooled on ice, adjusted to 5
mM EDTA, and centrifuged for 1 h at 100,000 x g. The supernatant was then
placed in cellulose ester dialysis tubing with a 20,000 molecular weight cutoff
(Spectrum Laboratories) and dialyzed at 4 °C against water. After dialysis, the
sample centrifuged for 3 h at 100,000 x g. The supernatant was discarded,
and the pellet was resuspended in 1 mL of deionized water (one-fifth of the
original homogenate volume).

Saponification of Cofactor. Two hundred microliters of purified cofactor
preparation was adjusted to 3 M NaOH by the addition of 62.5 uL of 10 M
NaOH and incubated for 1 h at 95 °C. After saponification, the sample was
neutralized by adding 62.5 pL of concentrated HCl and buffered by the
addition of 175 pL of 1 M Tris at pH 7.0. The resulting 500-uL sample was
dialyzed overnight against 2 L of deionized water by using a 3,500 MWC
Slide-A-Lyzer dialysis cassette (Thermo-Fisher Scientific). After dialysis, the
sample was centrifuged for 1 h at 100,000 x g, and the supernatant was
discarded. The saponified cofactor pellet was then resuspended in 200 pL of
deionized water.

PLC Treatment. For PLC treatment of purified cofactor, the final dialysis step
of the cofactor preparation protocol was omitted to maintain cofactor sol-
ubility. Twenty microliters of a buffer containing 3.2 M ammonium sulfate
and 50 mM Tris at pH 7.5, either alone or containing 2,000-3,000 U/mL PLC
(Sigma), was added to 475 pL of cofactor containing ~7 mM ZnCl,. Samples
were then incubated at 37 °C for 1 h, shaking at 600 rpm in an Eppendorf
Thermomixer (Fisher Scientific). After incubation, samples were transferred
to 10,000 MWC Slide-A-Lyzer dialysis cassettes (Thermo-Fisher Scientific),
and dialyzed against 4 L of deionized water for 72 h, changing the water
every 24 h. Samples were then removed from cassettes and centrifuged for
1 h at 100,000 x g. The resulting pellets were then resuspended in 400 pL
of deionized water.

For PLCtreatment of brain homogenate, 1.25mLof 10% (wt/vol) Prnp®® mouse
brain homogenate was adjusted to 0.25% Triton X-100 and 4 mM ZnCl,. Sixty
microliters of a buffer containing 3.2 M ammonium sulfate and 50 mM Tris at pH
7.5, either alone or containing 2,000-3,000 U/mL PLC (Sigma), was added and
samples were incubated at 37 °C for 1 h, shaking at 600 rpm in an Eppendorf
Thermomixer (Fisher Scientific). Next, 0.5 mM EDTA at pH 7.5 was added to
a final concentration of 6 mM. Samples were then transferred to 3,500 MWC
Slide-A-Lyzer dialysis cassettes (Thermo-Fisher Scientific) and dialyzed against 4 L
of PBS overnight. Treated homogenate was then removed from cassettes, and
0.5 mM EDTA at pH 7.5 was again added to a final concentration of 6 mM. The
efficacy of inactivation by EDTA was confirmed by using Western blot to check
that no signal reduction had occurred after incubation of PrP® with inactivated
brain homogenate as a result of glycophosphatidylinositol-anchor hydrolysis (24).

Silica Chromatography. A 500-uL aliquot of cofactor was lyophilized and
resuspended in 1 mL of chloroform. The sample was then applied to a Sep-
Pak Classic C18 cartridge (Waters Corporation), preequilibrated with 10 mL
of chloroform. Next, the cartridge was successively eluted with 10 mL of
chloroform, 15 mL of acetone:methanol (9:1), and 10 mL of methanol. All
three eluates were collected (separately), dried down under nitrogen gas,
and resuspended in 1 mL of water.

Serial Protein Misfolding Cyclic Amplification. Reconstituted sPMCA reactions
using brain-derived PrP¢ were conducted as reported by using either $c237
or Me7 PrP27-30 molecules as seed for the Day 1 reaction (7). Reactions in
subsequent rounds were seeded with 10 uL of product from the prior round.
Reactions using recombinant MoPrP were performed by using a similar
technique with slight modification. Briefly, sonication pulses were 15 s, and
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100-pL reactions contained 6 pg /mL recombinant MoPrP, 20 mM Tris at pH
7.5, 135 mM NacCl, 5 mM EDTA at pH 7.5, and 0.15% Triton X-100 supple-
mented with cofactor where indicated. In all experiments using recPrP
substrate, Day 1 reactions were seeded with 10 uL of recPrP*¢ originally
produced de novo as described (5) and subsequently propagated with pu-
rified cofactor or synthetic PE (this material was chosen as seed to match the
recPrP substrate with a recPrP>° seed). Lipids were tested at three final
concentrations, 2.5, 1.0, and 0.5 mM. Each lipid was resuspended from
powder with 0-1.5% Triton X-100, depending on solubility. PS was dissolved
in water; plasmalogen PE was dissolved in 0.04% Triton; PE, PI, Lyso-PE
and Lyso-PC were dissolved in 0.2% Triton; PC was dissolved in 0.5% Triton
X-100, and PG was resuspended in 1.5% Triton X-100.

PrP5¢ Detection. To detect PrP* molecules, samples containing hamster prions
were digested with 50 pg/mL proteinase K (PK) for 1 h at 37 °C, and samples
containing mouse prions (including all recPrP samples) were digested with
25 pg/mL PK for 30 min at 37 °C. All samples were processed for SDS/PAGE
and Western blotting as described (25), substituting Towbin transfer buffer
(26) and using mAb 6D11 as the primary antibody.

Scrapie Inoculation and Diagnosis. Intracerebral inoculation and diagnosis of
prion disease were performed as described (25). PMCA mixtures and products
were diluted 1:10 into PBS plus 1% BSA before inoculation. The inoculum
volume used was 30 pL.

Neuropathology. Brains were removed rapidly at the time of sacrifice by using
new, sterile-packaged dissection instruments and disposable surfaces to avoid
cross-contamination. They were immersion fixed in 10% buffered formalin
for 2-30 d, cut into ~3-mm-thick saggital sections, and placed in a tissue-
processing cassette. Cassettes were treated with 88% formic acid for 1 h, and
then stored in PBS. The tissue was processed for paraffin embedding, and
representative slides were stained with hematoxylin and eosin (H&E). Im-
munohistochemistry was performed on deparrafinized slides by using 2 pg/
mL 27/33 anti-PrP mAb for 30 min at room temperature after citrate antigen
retrieval and a Biocare Mouse on Mouse development kit.

Sample Preparation for NMR (3'P-NMR) and Flow Infusion Mass Spectrometry
(MS). A sample containing 5.1 mg of cofactor preparation was dissolved in 1
mL of HPLC grade chloroform. For MS analysis, 200 pL was removed for di-
lution into a 10-mL volumetric flask with 10 mM NH,OAc, 0.01% concen-
tration NH40OH in methanol. The final concentration of cofactor preparation
was equivalent to 102 pg/mL. The remaining 4.8 mg was dried under ni-
trogen and dissolved in 1.0 mL of detergent solution for 3'P-NMR analysis.
Both analyses were performed by Avanti Polar Lipids.

31p.NMR Analysis. The detergent sample solution was assayed on a Bruker
Advance 400 MHz instrument. Phosphorus response was calibrated with
a known standard of 18:1 PC for measurement of phospholipids in the
sample. The sample received 1,024 scans with nuclei relaxation time of 1 s for
optimum sensitivity.

Flow Infusion Mass Spectrometry. The 102 pg/mL solution was directly infused
into the interface of an API 4000 Qtrap mass spectrometer at 20 pL/min. The
solution was scanned under MS/MS techniques to selectively detect major
phospholipid and sphingoid base lipids. Table S7 outlines the MS/MS
parameters used for each lipid class.

The possible identity of the mass ions detected for each lipid class was
searched against a lipid mass spectral database at www.lipidmaps.org. The
counts per second (cps) intensities of each ion peak within a class specific
mass spectrum were nomalized to the total. The nominal molecular weight
calculated was used to convert millimolars of phosphorus to phospholipid in
the 3'P-NMR results. The search engine results were interpreted to provide
a proposed identity of the compounds according to the number of carbons
in the fatty acyl chains of the phospholipid structure with corresponding
number of double bonds. The identity was based on a general assumption
related to sample origin. Phospholipids with odd-numbered fatty acyl chains
are uncommon in mammalian systems. In the event of odd and even chain
options of identity, chain compounds were chosen. Finally, the cps abun-
dances of the chosen compounds were normalized against the total to
provide a relative abundance of compounds within the lipid class.
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Fig. S1. Detergent solubility of cofactor activity. Western blot probed with 6D11 anti-PrP mAb. Crude Prnp®° brain homogenates were solubilized with Triton
X-100 or N-octyl glucoside (NOG) as indicated, and centrifuged for 1 h at 100,000 x g. The resulting supernatant and pellet samples were used to reconstitute
purified native mouse PrP substrate in duplicate sSPMCA reactions seeded with Me7 prions. All samples were proteolyzed, unless otherwise indicated (-PK).
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Fig. $2. Additional species specificity assays. Western blot probed with 6D11 anti-PrP mAb. Immunopurified native deer PrP® substrate seeded with CWD
prions (Upper) or vole PrP¢ substrate seeded Sc237 prions (Lower) were supplemented with purified cofactor preparation in three-round sPMCA reactions,
where indicated. All samples were proteolyzed, unless otherwise indicated (-PK).
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Fig. S3. Effect of POPG on prion formation. Western blots are shown with three-round sPMCA reactions using recPrP substrate and seeded with recPrP*
template, supplemented with POPG at either 1 mM or 2.5 mM final concentration, as indicated.
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Fig. S4. Effect of various concentrations of synthetic PE on prion formation. Western blots are shown with three-round sPMCA reactions using recPrP sub-
strate and seeded with recPrP*° template, supplemented with various concentrations of synthetic plasmalogen PE, as indicated.
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Fig. S5. A comparison of recPrP conversion efficiency. Western blots are shown with single-step PMCA reactions using recPrP substrate and seeded with
recPrP> template, supplemented with either 1 mM plasmalogen PE alone or POPG plus RNA according to the protocol of Wang et al. (1), as indicated.

1. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132-1135.
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Fig. S6. The effects of different phospholipids on recPrP solubility. A preparation of 11 pug/mL recPrP was incubated with 2.2 mM POPG or PE at room
temperature for 10 min. After incubation, the sample was adjusted with a stock buffer to achieve the final concentrations of 5 pg/mL recPrP, 10 mM Tris at pH
7.5, 150 mM Nacl, 0.28% Triton X-100, PrP, and 1 mM phospholipid. The solution was end-over-end rotated for 5 min, the centrifuged for 1 h at 100,000 x g.
The supernatant (SN) was removed and the pellet (PEL) was resuspended an equal volume of fresh reaction buffer. One hundred microliters of each sample was
mixed with 2x SDS loading buffer analyzed by SDS/PAGE and Western blot.
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Table S1. Flow infusion mass spectroscopy analysis of purified cofactor preparation for PS
m/z, amu Intensity, cps ID Relative %
786.8 1.20e+04 C36:2 PS 3.57
788.7 9.00e+04 C36:1 PS 26.79
790.8 1.50e+04 C36:0 PS 4.46
810.7 2.70e+04 C38:4 PS 8.04
834.9 1.11e+05 C40:6 PS 33.04
836.5 2.40e+04 C40:5 PS 7.14
838.7 2.40e+04 C40:4 PS 7.14
882.9 2.10e+04 C44:10 PS 6.25
902.8 1.20e+04 C44:0 PS 3.57
Total 3.36e+05 100.00
No significant signals were detected for scans performed using parameters designed to detect sphingoid bases,
PA, or PG.
Table S2. Flow infusion mass spectroscopy analysis of purified cofactor preparation for Pl
m/z, amu Intensity, cps ID Relative %
619.6 1.20e+04 C20:4 PI 1.86
836 2.10e+04 C34:1 PI 3.26
857.8 6.30e+04 C36:4 PI 9.77
860 1.20e+04 C36:3 PI 1.86
863.7 1.50e+04 C36:1 PI 2.33
881.8 2.40e+04 C38:6 PI 3.72
883.9 4.50e+04 C38:5 PI 6.98
885.8 3.72e+05 C38:4 PI 57.67
887.8 5.40e+04 C38:3 PI 8.37
909.9 2.70e+04 C40:6 PI 419
913.8 1.20e+04 C40:4 PI 1.86
Total 6.45e+05 100.00

Table S3. Flow infusion mass spectroscopy analysis of purified
cofactor preparation for Lyso PC

m/z, amu Intensity, cps ID Relative %
496.7 7.14e+05 C16:0 LPC 45.33
522.8 6.00e+05 C18:1 LPC 38.10
544.6 1.50e+05 C20:4 LPC 9.52
568.8 1.11e+05 C22:6 LPC 7.05
Total 1.58e+06 100.00

Table S4. Flow infusion mass spectroscopy analysis of purified
cofactor preparation for Lyso PE

m/z, amu Intensity, cps ID Relative %
454.6 4.80e+04 C16:0 LPE 8.60
480.7 1.95e+05 C18:1 LPE 34.95
482.7 1.71e+05 C18:0 LPE 30.65
502.6 6.90e+04 C20:4 LPE 12.37
508.5 2.40e+04 C20:1 LPE 4.30
530.8 5.10e+04 C22:4 LPE 9.14
Total 5.58e+05 100.00
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Table S5. Flow infusion mass spectroscopy analysis of purified cofactor preparation for PC
m/z, amu Intensity, cps ID Relative %
704.8 7.50e+04 C30:1 PC 0.08
707 4.86e+05 C30:0 PC 0.54
722.6 7.20e+04 C32:6 PC 0.08
731 1.89e+05 C32:2 PC 0.21
7471 3.41e+06 C34:1 PC 3.77
749 8.31e+05 C34:0e PC 0.92
751 7.80e+04 C34:6 PC 0.09
757 7.20e+04 C34:3 PC 0.08
759 2.15e+06 C34:2 PC 2.38
762.9 1.32e+07 C34:0 PC 14.55
771 6.63e+05 C36:3e PC/C36:0p PC 0.73
773 1.29e+06 C36:2e PC/C36:2p PC 1.42
775 1.40e+06 C36:1e PC/C36:1p PC 1.55
780.9 1.32e+05 C36:6 PC 0.15
785 2.64e+06 C36:3 PC 2.93
7871 6.12e+06 C36:2 PC 6.78
789.1 2.40e+07 C36:1 PC 26.59
791 4.05e+06 C36:0 PC 4.48
795 3.21e+05 C38:5e PC/C38:5p PC 0.36
797 2.67e+05 (C38:4e PC/C38:4p PC 0.30
798.9 1.71e+05 C38:3e PC/C38:3p PC 0.19
801.1 3.21e+05 (C38:2e PC/C38:2p PC 0.36
803 3.36e+05 C38:1e PC/C38:1p PC 0.37
805 1.62e+05 (C38:7 PC/C38:0e PC/C38:0p PC 0.18
811.1 1.13e+07 C38:4 PC 12.47
812.9 2.27e+06 C38:3 PC 2.51
815.1 1.85e+06 C38:2 PC 2.04
819.1 2.76e+05 (C38:2 PC/C40:7p PC 0.31
820.9 2.04e+05 C40:6e PC/C40:6p PC 0.23
8229 1.17e+05 C40:5e PC/C40:5p PC 0.13
825.1 1.11e+05 C40:4e PC/C40:4p PC 0.12
827.1 6.60e+04 C40:3e PC/C40:3p PC 0.07
830.2 1.26e+05 C40:8 PC/C40:1e PC/C40:1p PC 0.14
833.1 1.58e+06 C40:0 e PC/C40:0p PC 1.74
835.1 5.10e+06 C40:6 PC 5.64
837 1.61e+06 C40:5 PC 1.78
839 1.41e+06 C40:4 PC 1.56
845.2 5.34e+05 C41:1p PC 0.59
847 1.50e+05 C40:0 PC/C41:0e PC/C42:7p PC 0.17
855.1 1.83e+05 C42:3p PC 0.20
857 3.00e+05 C42:9 PC/C42:2e PC/CA2:2p PC 0.33
863.1 9.30e+04 C42:6 PC 0.10
871.1 5.40e+05 C42:2 PC 0.60
878.9 1.68e+05 C44:12 PC 0.19
Total 9.04e+07 100.00
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Table S6. Flow infusion mass spectroscopy analysis of purified cofactor preparation for PE
m/z, amu Intensity, cps ID Relative %
690.9 1.20e+04 C32:1 PE 0.15
692.8 1.20e+04 C32:0 PE 0.15
702.9 6.60e+04 C34:2e/C34:2 P PE 0.83
704.9 1.05e+05 C34:1e/C34:1 P PE 1.31
716.9 4.20e+04 C34:2 PE 0.53
718.9 3.18e+05 C34:1 PE 3.98
720.9 4.50e+04 C34:0 PE 0.56
724.7 2.40e+04 C36:5e PE/C36:5p PE 0.30
726.8 6.30e+04 C36:4e PE/C36:4p PE 0.79
728.9 1.59e+05 C36:3e PE/C36:3p PE 1.99
730.9 1.02e+05 C36:2e PE/C36:2p PE 1.28
732.8 6.60e+04 C36:1e PE/C36:1p PE 0.83
738.8 2.10e+04 C36:5 PE 0.26
740.9 2.40e+05 C36:4 PE 3.00
742.9 5.70e+04 C36:3 PE 0.71
744.9 3.54e+05 (C36:2 PE 4.43
746.9 4.20e+05 C36:1 PE 5.26
750.9 1.44e+05 (C38:6e/C38:6p PE 1.80
755 1.26e+05 C38:4e/C38:4p PE 1.58
758.8 3.90e+04 (C38:2e/C38:2p PE 0.49
764.9 7.38e+05 C38:6 PE 9.24
768.9 1.98e+06 C38:4 PE 24.82
773 4.80e+04 C38:2 PE 0.60
781 8.40e+04 C40:5e PE/C40:5p PE 1.05
782.9 9.00e+04 C40:4e PE/C40:4p PE 1.13
788.8 1.80e+04 C40:1e PE/C40:1p PE 0.23
792.9 2.42e+06 C40:6 PE 30.30
799 4.50e+04 C40:3 PE 0.56
807 2.10e+04 C42:6p PE 0.26
812.9 1.80e+04 C42:3p PE/C42:10 PE 0.23
818.9 1.50e+04 C42:7 PE/C42:0e PE/C42:0p PE 0.19
825 2.70e+04 C42:4 PE 0.34
837 1.80e+04 C44:12 PE 0.23
840.8 4.80e+04 C44:10 PE 0.60
Total 7.99e+06 100.00
Table S7. Experimental parameters used for mass spectrometric analysis of various lipid classes
Compound Scan range, u DP CE CXP MS/MS lon mode
PE 400-1,000 100 30 16 NL 141 u +
PC 400-1,000 125 45 14 Prec 184 u +
Pl 400-1,000 175 62 7 Prec 241 u —_
PS 400-1,000 150 40 10 NL 87 u —
PA 400-1,000 125 45 10 Prec 153 u —
PG 400-900 120 25 15 NL 172 u +
d18:1 SB 250-800 120 54 15 Prec 264 u +
d18:0 SB 250-800 120 54 15 Prec 266 +

CE, collision energy; CXP, collision exit potential; DP, decluster potential; NL, neutral loss; Prec, precursor ion;
SB, sphingoid base; u, unified atomic mass unit.
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