Introduction

The most aggressive, treatment-resistant central nervous system (CNS) malignancy are high-grade gliomas (Grade III, IV); maintaining the worst prognosis of all intracranial tumors with a mean survival of 15 months and 5-year survival rate of <5% ¹⁻⁵. Even though over 50% of patients with high-grade gliomas receiving standard-of-care (SOC) treatment regimens experience virtually no improvement, the SOC has not been altered or enhanced in over a decade⁶. In animal models, estrogen (17 β estradiol; E2), a steroidal sex hormone, has been shown to suppress glioma ontogenesis by binding Estrogen Receptor alpha (ER α), beta (ER β), and the G-protein Coupled Estrogen Receptor (GPER)^{10,11}. Despite therapeutic efficacy in various malignancies, estrogen therapies increase the risk of the development of other diseases overtime and non-specifically bind and agonize $ER\alpha$, causing additional adverse side effects^{10,12–18}. ERβ is understood to have tumor-suppressive effects in glioblastoma, as increased expression correlates with better prognosis and less-aggressive tumor growth^{10,19,20}.

We recently published that a novel, potent and

selective ERβ agonist, *ent*-28: a) reduces cell proliferation at a 50-fold lower concentration and b) induces apoptosis at a 7-fold lower concentration when compared to TMZ in GBM cell lines²⁶. We have demonstrated that as a selective ER β agonist, ent-28 suppresses tumor growth and induces apoptosis of tumor cells derived from glioma patients in vitro²⁶. In addition, our preliminary data demonstrate that *ent-*28 attenuates growth of patient-derived xenografts (PDX) and has no adverse side effects in immune-competent mice at acute and chronic dosing schedules. Thus, the specificity of ent-28 for ER β over ER α will allow us to minimize side-effects of non-selective ER-targeted therapy and maximize therapeutic benefit³².

Methodology

Patient-derived cell lines. Freshly resected tumors from glioma patients enrolled in an ongoing prospective, multi-institutional Alliance Network clinical trial (Study Chair: Dr. Arti Gaur) were used to generate tumor-derived stem cells and adherent glioma cell lines.

Preparation of ent-28. ER β agonist, ent-28, was designed by and made in the Micalizio laboratory. We used 90% propylene glycol (PG) to dissolve the powdered compound into solution. Compound formulations were calculated using the average body weight of the treatment mice to create a 50mg/kg (mpk) dose.

Antitumor activity of ent-28 on patient-derived xenografts. Flank tumors were established in immune compromised NODscid IL2r^ynull (NSG) mice (n=13) by subcutaneous injection of 1 x 106 patient cells in 200uL of DMEM. When tumors were palpable, mice were either treated via oral gavage 3 times per week with 100uL of 50mg/kg (mpk) ent-28 diluted in 90%PG (n=10) or with 100uL of 90% PG alone (n=3). Length and width of tumors were measured twice a week with a caliper (Mitutoyo, Kanagawa, Japan) and tumor volumes were calculated using the formula: (Length) x (Width)2/2. We conducted a log-rank test to calculate the p-value and hazard ratio for the Kaplan-Meier analysis. To establish orthotopic patient derived xenografts 500,000 glioma cells

were stereotactically injected into the dorsal striatum of male NSG mice (n=20). 2 days after stereotactic injections, tumors were evaluated through 3T gadolinium contrast-enhanced MR imaging and mice were randomized into treatment groups. Mice were oral gavaged with either 90% propylene glycol (PG) (n=10) or 50 mg/kg ent-28 (n=10) 3 times/week and MR imaged weekly. We conducted survival analysis using the log-rank test to calculate significance.

Single-dose pharmacokinetic study. Male CD-1 mice (n=24) were oral gavaged with 50mg/kg ent-28 and tissues and plasma were harvested at 6 different time points (n=3 per timepoint). The tissues collected: kidney, spleen, liver, lung, heart, small intestine, pons/medulla, midbrain, olfactory bulb, hypothalamus, cerebellum, and cortex. The timepoints included: 0 hour, 15-minutes, 30-minutes, 1-hour, 6-hour, 24-hour, and 48-hour. The samples were distributed to our collaborator, Dr. Thomas Burris, Washington University, St. Louis, and LC-MS-MS analysis was conducted onsite.

Immunohistochemistry. Organs from ent-28-treated (n=3) and untreated (n=3) mice were fixed in 10% formalin for 24 hours, rehydrated in 70% ethanol, and paraffin-embedded. The images were quantified using the average of three independent tumor core and edge regions using QuPath.

Clinical data collection and analysis. Patient data was collected manually from the electronic medical record system utilized at DHMC, EPIC. Analysis is ongoing and is anticipated to incorporate multivariate ANCOVA.

	JEA	Diagnosis	willo Glaue	runior location	centularity	Fieromorphism	Linuotinenai promeration	NECIUSIS	
1	М	GBM	4	R Temporal					+
11	F	AA	3	L Frontal	Mod-High	+	-	-	+
III	М	DA	2	L Occipital	Moderate	+	-	-	+
IV	М	GBM	4	R Frontal	Moderate	moderate	+	-	+
V	М	GBM	4	L Parietal	Mod-High	moderate	+	+	+
VI	F	GBM	4	R Parietal	Increased			+	+
VII	M	GBM	4	R Sup. Temporal	High	+	+	+	+
VIII	М	GBM	4	R Insular Mass	High	High	+	+	+
IX	М	AA	3	L Temporal	Moderate	moderate	-	-	+
Х	M	AO	3	R Frontal	High	+	+	-	

Digital poster access

Dartmouth-Hitchcock Medical Center, Department of Neurology, ²Program of Experimental and Molecular Medicine, Dartmouth College, ³Department of Chemistry, Dartmouth College, ⁴Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy

