

Indications for Nuclear Imaging in Epithelioid Sarcoma – An Analysis of the **SEER Registry**

Introduction

- Nuclear imaging, especially PET, has been widely adopted, though its role in staging and surveillance imaging in Epithelioid Sarcoma (ES) cases remains largely undefined
- ES is a mesenchymal tumor that affects patients of all ages²
- ES is a high-grade cancer that commonly metastasizes to regional lymph nodes, lung, bone, brain, and the scalp^{1, 4}
- ES has an overall risk of metastasis at presentation of 53%³
- Metastatic disease is associated with worse outcomes
- Treatment of ES may involve radiation, chemotherapy, and surgery

Aim

• To better define potential indications for the use of nuclear imaging in the staging of Epithelioid Sarcoma, by evaluating a patient's risk for metastasis based on presenting characteristics.

Methods

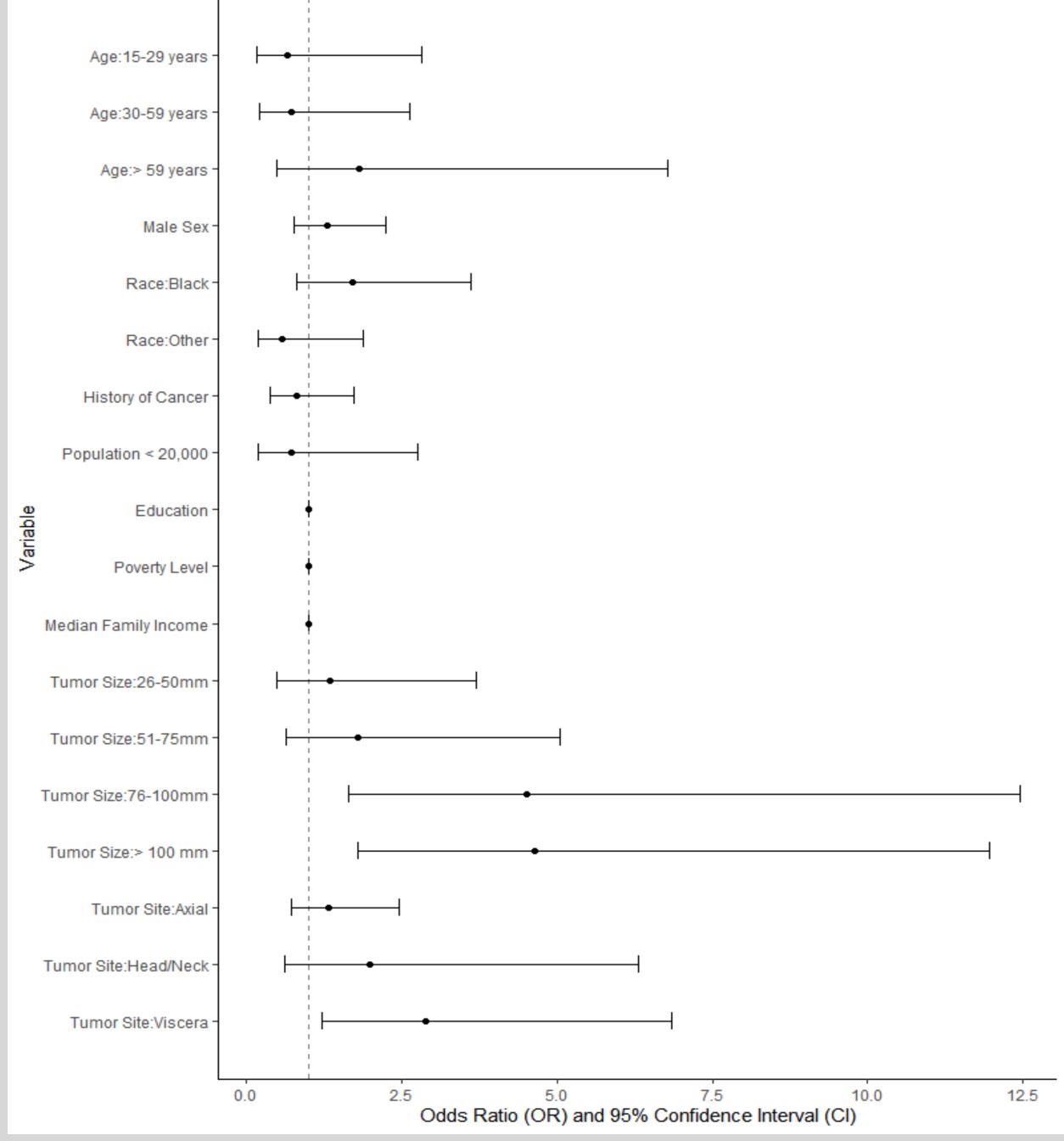
- Using the Surveillance, Epidemiology, and End Results (SEER) database provided by the National Cancer Institute (NCI), we identified a cohort of 565 patients with primary epithelioid sarcoma from 2004 to 2015
- Histologic subtype of ES was determined using the International Classification of Disease for Oncology
- Our primary outcome was presence of detectable metastatic disease at presentation
- We identified patients as having localized, regional, and distant metastatic disease, and defined non-metastatic disease as having localized or regional disease.
- We analyzed our cohort according to the following patient characteristics: age, sex, race, and history of cancer
- We analyzed our cohort according to the following tumor characteristics: size and primary location at presentation
- We analyzed our cohort according to the following socioeconomic factors based on each patients county of residence: median family income, poverty status, and level of education

Charlie G. Callif², Dylan J. Parker MD¹, Paul M. Werth PhD^{1,2}, Eric R. Henderson MD^{1,2} ¹ Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA ² Department of Orthopaedics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA

Results

Table 1. Patient and Tumor Characteristics of Patients with Non-metastatic and Metastatic **Epithelioid Sarcoma**

Variable	Non-met	Met	<i>p</i> value
	n = 419	n = 146	
Age at Diagnosis (%)			0.001
0-14 years	24 (5.7)	6 (4.1)	
15-29 years	82 (19.6)	22 (15.1)	
30-59 years	206 (49.2)	54 (37.0)	
> 59 years	107 (25.5)	64 (43.8)	
Sex n (%) male	223 (53.2)	84 (57.5)	0.421
Race ¹ n (%)			0.285
White	344 (82.7)	113 (77.4)	
Black	43 (10.3)	22 (15.1)	
Other	29 (7.0)	11 (7.5)	
History of Cancer n (%) yes	58 (13.8)	21 (14.4)	0.981
Population $\leq 20,000^{2}$ (%)	24 (5.7)	7 (4.8)	0.843
Education ³ % (mean (SD))	14.56% (5.98%)	14.61% (6.30%)	0.938
Poverty Status ⁴ % (mean (SD))	15.03% (4.91%)	14.88% (6.07%)	0.768
Median Family Income ⁵ (mean (SD))	\$71,306 (\$16,452)	\$73,295 (\$17,896)	0.219
Tumor Size ⁶ n (%)			< 0.001
\leq 25 mm	88 (26.1)	8 (8.8)	
26-50mm	88 (26.1)	16 (17.6)	
51-75mm	67 (19.9)	15 (16.5)	
76-100mm	39 (11.6)	21 (23.1)	
> 100 mm	55 (16.3)	31 (34.1)	
Primary Tumor Site n (%)			< 0.001
Extremity	217 (52.7)	41 (31.3)	
Axial	142 (34.5)	49 (37.4)	
Head/Neck	29 (7.0)	8 (6.1)	
Viscera	24 (5.8)	33 (25.2)	


¹Asian. Pacific Islander, American Indians, Alaska Natives, and Unknown ²Setting based on Rural-Urban Continuum Code 2013

³Percent of persons over 25 years old with less than 12 years of education, United States Census 2013 ⁴Percent below Federal Poverty Level, United States Census 2013

⁵Median family income, United States Census 2013

⁶Tumor size missing for 178 (28.6%) cases

Figure 1. Forest Plot of Odds Ratios (OR) and 95% Confidence Intervals (CI) From the Multivariate Regression Model

Age Reference Group: 0-14 years Race Reference Group: White Tumor Size Reference Group: $\leq 25 \text{ mm}$ Tumor Site Reference Group: Extremity

	(OR), 95% Confidence I Presentation per Patient	^
	Per	
T T 1 1	0 D	1

Variable	OR	95% CI	<i>p</i> value
	n = 419	n = 146	
Age at Diagnosis			
0-14 years	1.00 (Ref)	-	-
15-29 years	0.66	0.15 - 2.81	0.580
30-59 years	0.72	0.19 - 2.62	0.621
> 59 years	1.82	0.48 - 6.7	0.370
Male Sex	1.30	0.75 - 2.24	0.343
Race ¹			
White	1.00 (Ref)	-	-
Black	1.70	0.80 - 3.61	0.162
Other	0.57	0.17 - 1.87	0.359
History of Cancer	0.80	0.37 - 1.73	0.574
Population $\leq 20,000^2$	0.72	0.19 - 2.74	0.638
Education ³	1.00	0.99 - 1.00	0.483
Poverty Level ⁴	1.00	0.99 - 1.00	0.488
Median Family Income ⁵	1.00	0.99 - 1.00	0.189
Tumor Size			
\leq 25 mm	1.00 (Ref)	-	-
26-50mm	1.34	0.49 - 3.69	0.563
51-75mm	1.79	0.64 - 5.03	0.262
76-100mm	4.52	1.64 - 12.44	0.003
> 100 mm	4.62	1.79 - 11.96	0.001
Primary Tumor Site			
Extremity	1.00 (Ref)	-	-
Axial	1.32	0.71 - 2.45	0.374
Head/Neck	1.97	0.62-6.30	0.248
Viscera	2.88	1.21 - 6.85	0.016

¹Asian, Pacific Islander, American Indians, Alaska Natives, and Unknown ²Setting based on Rural-Urban Continuum Code 2013 ³Percent of persons over 25 years old with less than 12 years of education, United States

2013 ⁴Percent below Federal Poverty Level, United States Census 2013 ⁵Median family income, United States Census 2013

•	Tum
	with
•	Othe

nor size and primary tumor site are significantly associated a greater risk of detectable metastatic ES at presentation. • Other factors evaluated did not correlate with metastatic ES at presentation

Our findings suggest that patients who present with tumors greater than 76 mm and/or those with visceral primary tumors, should prompt a more thorough imaging workup to evaluate for metastatic disease.

 A small subset of patients was excluded due to a lack of staging data. • The SEER database categorizes location of tumors as localized, regional, or distant. Regional localization could not be further evaluated, and due to this, we included regional tumors as non-metastatic disease.

Socioeconomic variables were gathered at the county level, which may not accurately represent the lived realities of the patients included.

Charlie Callif

Conclusion

Epitheliod sarcoma of the right gluteal muscle

Limitations

Work Cited

Chase, D.R. and F.M. Enzinger, *Epithelioid sarcoma. Diagnosis, prognostic* indicators, and treatment. The American journal of surgical pathology, 1985. 9(4): p. 241-263.

Fisher, C., *Epithelioid sarcoma of Enzinger*. Advances in anatomic pathology, 2006. **13**(3): p. 114-121.

Jawad, M.U., J. Extein, E.S. Min, and S.P. Scully, *Prognostic factors for survival in* patients with epithelioid sarcoma: 441 cases from the SEER database. Clin Orthop Relat Res, 2009. **467**(11): p. 2939-48

Spillane, A.J., J.M. Thomas, and C. Fisher, *Epithelioid sarcoma: the* clinicopathological complexities of this rare soft tissue sarcoma. Annals of surgical oncology, 2000. 7(3): p. 218-225.

Contact Information