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Role of Artificial Intelligence in PET/CT L)
Imaging for Management of Lymphoma

Eren M. Veziroglu, MS,f Faraz Farhadi, BS,*" Navid Hasani, BS,* Moozhan Nikpanah, MD,**
Mark Roschewski, MD,’ Ronald M. Summers, MD, PhD,* | and Babak Saboury, MD,MPH*

Our review shows that Al-based analysis of lymphoma whole-body FDG-PET/CT can inform
all phases of clinical management including staging, prognostication, treatment planning,
and treatment response evaluation. We highlight advancements in the role of neural net-
works for performing automated image segmentation to calculate PET-based imaging bio-
markers such as the total metabolic tumor volume (TMTV). Al-based image segmentation
methods are at levels where they can be semi-automatically implemented with minimal
human inputs and nearing the level of a second-opinion radiologist. Advances in automated
segmentation methods are particularly apparent in the discrimination of lymphomatous vs
non-lymphomatous FDG-avid regions, which carries through to automated staging. Auto-
mated TMTV calculators, in addition to automated calculation of measures such as Dmax
are informing robust models of progression-free survival which can then feed into improved
treatment planning.

Semin Nucl Med 53:426-448 © 2022 Published by Elsevier Inc.

Introduction

Lymphomas are pathologic proliferations of lymphocytic
immune cells within the lymphatic system."” Lympho-
mas are clinically grouped into Hodgkin (HL) and non-
Hodgkin (NHL) types, then further sub-classified by immu-
nophenotype, histopathology, and cytogenetic profiles.””*
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Common origins include B, T and NK cell types.’ Lymphoid
neoplasms in the United States will account for approxi-
mately 5% of all new cancer cases in 2022, placing lym-
phoma at the sixth highest cancer incidence rate overall
(~89,000/y).>" Overall, approximately one million Ameri-
cans currently experience lymphoma (~760,000 NHL and
~220,000 HL).

Clinical manifestations are diverse and presumably result
from metabolic stress (aggressive growth), mass effects (the
tumor pressing on surrounding organs), and hematopoietic
dysregulation or dysfunction. The clinical manifestation of
lymphoma differs depending on histologic subtype and site
of involvement. NHL can manifest subacutely or acutely with
a rapidly expanding mass, constitutional symptoms, and
tumor lysis syndrome, or it can develop insidiously with
slowly rising lymphadenopathy that waxes and wanes over
years (eg, follicular lymphoma). Most commonly, HL mani-
fests as asymptomatic lymphadenopathy, constitutional
symptoms (present in 40% of patients), or a mass on a chest
radiograph.”

Since 1990s, 18F-FDG-PET in combination with CT has
been deemed the state-of-the-art imaging technology used in
the staging workup and therapy response assessment of HL and
numerous forms of NHL.”'""'" Subsequently, Deauville criteria
was proposed to standardize lymphoma interpretation using
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the degree of FDG avidity in relation to the mediastinal blood
pool and liver. The Lugano classification, proposed in 2014,
sought to simplify and standardize baseline and response assess-
ment in FDG-PET/CT in lymphoma. 18F-FDG-PET/CT imag-
ing provides a clear picture of the metabolic activity and
anatomical structure of lymphomas enabling improved diagno-
sis/differentiation, staging, and prognosis capabilities. Consider-
ing the diversity of the lymphomas and their manifestations,
functional imaging prior to or during therapy may be used to
guide management decisions based on geographic heterogeneity
as well as the biological, pathological, and metabolic condition
of the tumor.

Artificial intelligence (Al is uniquely positioned to funda-
mentally alter medicine, possibly enhancing both physicians'
and patients' experiences. Al-based solutions have enhanced
workflow in online appointment scheduling, online check-
ins at medical centers, the digitization of medical records,
reminder calls for follow-up visits and immunization dates,
and drug adverse effect warnings when several prescriptions
are prescribed.'”'” Al models have demonstrated a potential
to facilitate mammography interpretation,'*'” echocardio-
gram interpretation,“‘ and cancer screening,17 prediction
and prognosis.'

In medical imaging, Al systems can further facilitate many
aspects such as clinical decision-making, enhance image
acquisition, quality assessment, and post-processing techni-
ques (such as tumor delineation, registration, and quantifica-
tion), and dose estimation.'”***" Specifically in FDG-PET
imaging of lymphoma, recent studies have demonstrated this
potential by developing models able to automatically recog-
nize the location of the lymphoma, segment the lesion, sum-
marize lesions characteristics and heterogeneity with
appropriate radiomics, and assess disease transformations
over several time points.u’Z $2129.20

Various pathologic subtypes of lymphoma have different
patterns of 18F-FDG avidity. For instance, HD and DLBC
NHL lesions often have high FDG avidity and therefore can
be staged and evaluated with 18F FDG-PET/CT. Meanwhile,
other histological subtypes of NHL such as MALT, marginal
zone lymphoma, and small lymphocytic lymphoma may
have lymphomatous involvement without high FDG avid-
ity.27 In such conditions, Al-based FDG-PET/CT imaging
may identify patterns of FDG uptake and notify the physi-
cians that the evaluated subtype has limited FDG avidity and
may not be further assessed by Al-based tools.

In a previous publication, our team conducted a system-
atic scoping review of the applications of Al in 18F-FDG-
PET/CT lymphoma based on studies published prior to Sep-
tember 2021.%” There, we explored the various structures of
proposed Al systems, tasks performed by the models (eg,
classification, characterization, detection, segmentation), and
applications of radiomic analysis in lymphoma prognostica-
tion and management.

To perform this review, the PubMed database was queried
using the search terms "artificial intelligence," "lymphoma,"
and "positron emission tomography." English articles on per-
tinent clinical research were included. Publications focusing
on several diseases, conference articles, and literature

reviews, articles written in a language other than English,
and articles that were inaccessible were eliminated. This
search yielded 17 articles, the majority of which developed
Al-based lymphoma segmentation models or used Al based
PET/CT radiomics to predict prognosis in various lymphoma
subtypes. Key studies are highlighted in Table 1, and Table 2.

In this article, while reviewing novel uses of Al in lym-
phoma PET/CT reported since September 2021, we also
focus on automatic segmentation and the utility of radiomic
features with discussion tailored toward clinicians. Al based
segmentation can enable prognostication and radiomic analy-
sis of lymphoma PET/CT studies to obtain useful insights
regarding therapy enhancement, remission, and recurrence
prediction.

Automatic segmentation of PET
images in management of
lymphoma

On Disease Prognostication and Radiologic
Biomarkers

In this section, we discuss quantifiable radiologic features as
proxies of disease burden that are otherwise impractical to
implement without Al methods.

Similar to many other malignancies, lymphomas go
through progressively worsening clinical stages as the cancer
cells spread to distant parts of the body. Quantifying the
spread of the disease is part of many of the important prog-
nostic factors in lymphoma management. Imaging, particu-
larly PET-based imaging, is key for determining the extent of
lymphomatous disease, treatment responsiveness, and ulti-
mately defining and determining disease remission. Most
clinical radiologists apply a very basic level of image analysis,
commenting for example on the number, anatomic locations,
and longest axes of the regions of FDG avidity. Experienced
radiologists can accurately integrate PET/CT data, identify
pathologic from non-pathologic regions, and draw their
boundaries to create a set of all FDG signals related to tumor
activity; however, this process is not routinely done. We call
this set of all FDG-avid volumes of interest the total meta-
bolic tumor volume (TMTV).

Our current clinical models of disease prognostication
comparatively input a very basic level of image information.
Notably, the Lugano classification system stratifies disease
into four stages: a single node region, two or more ipsilateral
regions, involvement both superior and inferior to the dia-
phragm, and diffuse/disseminated involvement of one or
more extra lymphatic organs. These stages are presumably a
proxy for the state of someone’s disease along a timeline, and
although there is some quantitative element in this staging
system, it is highly discretized and therefore may not as accu-
rately represent total disease burden as a continuous variable
such as TMTV. We have substantial evidence to support a
hypothesis that TMTV is a high-quality proxy for disease
burden and therefore stage along a timeline, particularly for
lymphomas™*®'(Fig. 1). However, its implementation in
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Artificial Intelligence in Lymphoma PET Imaging: A Scoping Review (Current Trends and Future Directions). PET Clin. 2022 Jan;17(1):145-74.

patient care is challenged by the time and labor-intensive
nature of the process causing it to be underutilized.”” The
ability to automatically segment PET images can enable
numerous additional analytical tools for improved under-
standing and management of lymphoma beyond TMTV as
well. Thus far, we have shown that TMTV proxies for total
disease burden and therefore prognostication, and that auto-
mated segmentation methods are key to enable the wide-
spread clinical implementation of these measures.

On Al-Based Automated TMTV
Calculation

Al methods have been used for TMTV calculation. In this
section we provide an outlined description of automated seg-
mentation for calculating TMTV tailored toward clinicians.
For more detail on study design, data collection and labeling,
see our collaborators’ previous work with the SNMMI task
force on AL>" A workflow presented by the task force is pre-
sented here (Fig. 2).

Data Labeling and Challenges Therein

The determination of TMTV in current practice is typically
based on a semi-automatic segmentation process by using a
thresholding algorithm or region growing to define volumes
of interest around the tumor. Then, a trained radiologist
makes manual modifications (boundary adjustment) and
annotations (tumor or not) to these regions, as well as adding
new regions or removing erroneous regions to define the
ground truth. In addition to labor and time-intensity of the
task, challenges in ground truth determination include: (1)
intra- and inter-reader variability meaning that each human
reader will have a different “truth” and (2) that annotation
with one hundred percent accuracy is essentially impossible,
meaning there will always be some number of false positives
and false negatives with both human and computer analysis.
For example, Weisman et al. trained a CNN with 5 fold
cross-validation and compared the algorithm's performance
with agreement between physicians. The authors showed the
algorithm could automatically detect diseased lymph nodes
in PET/CT with an error rate comparable to inter-physician
variance. In 20 patient scans read by two radiologists, the
second reader identified 210 of 219 of the nodes while the
CNN identified 197 of 219 of the nodes.”* The relevance of
this study is underlying in the idea of our inability to exactly
know the ground truth of what constitutes the set of diseased
lymph nodes vs benign ones. Therefore, we cannot grade the
CNN model necessarily on a true-positive rate, but rather
how well it can identify the set of all lymph nodes that were
shared in their annotation between trained physicians. The
Al task force of the SNMMI has agreed that the ground truth
is rarely known in clinical studies, as it requires a biopsy or
post-mortem evaluation to truly determine. While many
clinical studies designate a “ground truth,” they are in fact
referring to adjudication by an expert labeler or labelers.
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Figure 1 Stratification of progression free survival by TMTV level. This research was originally published in JNM. Capo-
bianco et al. Deep-Learning 18F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Dif-
fuse Large B-Cell Lymphoma. J Nucl Med. 2021 Jan;62(1):30-6.

Utilizing deep learning for the identification and segmenta- whole-body lymphoma PET/CT scans and demonstrated the
tion of locations of disease activity in lymphoma enables ability to classify entire SFEPU regions.””

global and site-specific evaluation of disease burden, giving Using CT information in automatic detection of sites of
vital prognostic data to already-in-use clinical risk scores.”’ involvement in lymphoma is an opportunity for differentiat-

ing normal vs abnormal uptake. In a study Lartizien et al.
tested performance of a support vector machine (SVM) based
on texture features to evaluate a database of regions of inter-

Overcoming challenges of automated est (ROD) from PET/CT scans of patients with lymphoma

segmentation (sFEPU) consisting of 156 lymphomatous and 32 suspicious but non
One of the challenges for both radiologists and automated lymphomatous ROIs. They included training databases of
methods for pathologic FDG-avid region identification are PET only or PET and CT features with or without feature
sites of FDG excretion and physiologic uptake (sFEPU). selection to assess the added value of multimodality
sFEPU include the bladder (excretory pool) and highly meta- approach to classification performance. The series of com-
bolic tissues such as the kidneys, brain and heart (Fig. 1). In bined PET and CT features resulted in the greatest classifica-
a study Bi et al. approached the problem of identifying sites tion performance, highlighting the potential benefits of
of disease involvement in lymphoma in a reverse manner by combining different complementary imaging modalities.”
removal of normal structures. The authors used a multiscale While most publications on the topic report on combined
superpixel-based encoding method and class-driven feature information from both modalities, differentiating abnormal
selection and classification model that was applied to 40 vs normal but suspicious regions remains a challenge in
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detection of sites of disease involvement. Weisman et al.
reported FP findings were found most often in areas of higher
physiologic uptake for instance in several cases the network
was unable to differentiate brown adipose tissue uptake from
lymph node uptake despite having CT as an input.”*

We have seen the challenges of automated segmentation
methods in determining sFEPU and expect that further
developments focused on uncertainty management will dra-
matically improve model outcomes. In this subsection, we
have discussed how regions of interest are identified and the
challenges in automated tumor region detection.

Model Development, Training,
and Challenges Therein

Next, a specific model for artificial intelligence must be
defined. The current state of the art is a convolutional neural
network (CNN).”* CNNs work well for image segmentation
tasks and they are inspired by visual systems in animals.”
CNNss apply matrix operations to learn about image features
at different levels, for example, edge finding, loco regional
features, and macro-level shapes. Best practices for model
development are to have multiple radiologists for annotating
training datasets and evaluating segmentation. It has also
been recommended to consider algorithms that are data-effi-
cient and can input unlabeled data for semi-supervised learn-
ing given the bottleneck of human radiologists available for
data labeling/annotation. ™

Computation power is a challenge in training automatic
segmentation algorithms particularly with the large size of
whole-body PET/CT studies. Jema et al. proposed a method
to rapidly identify and segment tumors and gather metabolic
data using 2D and 3D convolutional neural networks.”® The
architecture was created to accommodate the large size of
whole-body scans, and significant imbalance between the
volume of healthy tissue and the tumor load. Their technique
achieves computational efficiency by dividing the body into
three parts. It performs 2D axial and sagittal slice-by-slice
segmentations, and then refines the 2D predictions with
region-specific 3D CNNs. The authors reported a mean Dice
score of 88.6% using a training dataset of 2266 scans from
patients with diffuse large B cell lymphoma (DLBCL) and
testing on 1124 scans from patients with follicular lym-
phoma (FL). In addition to compute resource efficiency,
these results suggest that a model trained on one type of lym-
phoma has the potential to be expanded to other types. Diao
et al. also developed an approach toward reducing compute
resource needs. By separately training a UNet-based model
on PET and CT data, then fusing the evidence together, Diao
et al. reduced GPU needs by 50% of models training on PET/
CT data together.”” They also achieved a high level of accu-
racy with automatic segmentation. In 70% of the test instan-
ces they achieved a Dice similarity coefficient greater than
0.85. The authors argue that this approach takes better
account of the uncertainty involved in different imaging
methods. In this method, they define the evidence of PET

and CT as a set of ordered triple probability values. Each
voxel is assigned a probability of either belonging to tumor,
background, or indeterminate. The contribution to the field
is a proposal of the evidence loss function, which is an opera-
tion on the ordered triple of probability belonging to back-
ground, tumor, and uncertainty. Uncertainty is output
directly through the network and is then minimized with the
combination of PET and CT information. These two studies
exemplify challenges in model development and training par-
ticularly related to compute resources and the potential rele-
vance of transfer learning for lymphoma models.

Validation and Testing the Model

There are different approaches to model testing, depending on
the level of data availability. Ideally, one would test the model
on a fully external data set (eg, different institution, different
scanner); however, most of the time, this is not the case since
most studies involve working with limited datasets within one
institution. A popular way to overcome this limitation in data
availability is by cross-validation, either testing exhaustively or
non-exhaustively. Exhaustive cross-validation techniques often
take a leave-p-out approach, where a number of observations,
P, is used to test the model, and all other data is used to train
the model. Then, the sets designated for training and testing are
changed until all possible combinations of training and testing
sets are performed, hence an “exhaustive” cross-validation. Since
a new model is trained for each combination, leave-p-out
approaches can quickly become computationally intense as the
number of combinations scales non-linearly. Non-exhaustive
cross-validation techniques approximate exhaustive cross-vali-
dation by applying randomness to the process of assigning sam-
ples toward testing or training, and by reducing the number of
combinations tested. K-fold cross-validation is a common
approach, whereby the samples are randomly ordered and
divided into a number of sets, k, of equal size; then, the model
is trained on k-1 sets and tested on one set. Finally, the process
is repeated such that k models are trained and tested. Other
approaches to overcome limited data availability for model
training and testing include data creation or augmentation that
create new samples by image manipulation (eg, image mirror-
ing, rotation). Importantly, the model’s success or failure should
be carefully measured by proper selection of the figures of
merit. Common figures of merit include Dice similarity score
and area under receiver operating characteristic curve (AUC);
however, the SNMMI Al task force has evidenced a need for
even more task-specific measures.

Examples

Technical Evaluation

The first stage of model implementation beyond proof-of-con-
cept is technical evaluation, meaning the “evaluation on specific
clinically relevant tasks such as those of detection and quantifica-
tion using figures of merit that quantify aspects such as accuracy
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and precision.” In one notable example, a study by Capo-
bianco et al., a Siemens-developed TMTV calculator (designated
as TMTV PARS) was compared with a reference standard con-
structed by two nuclear medicine physicians. All else equal, the
people with high TMTV had a worse prognosis measured by
progression-free survival and overall survival compared with
those having a low TMTV. This statement held true in both the
reference standard and automatic calculated groups (Fig. 3).*

Clinical Evaluation

The best practices for evaluation of clinical tasks as defined by
the RELAINCE guidelines state that we should “evaluate the
impact of the Al algorithm on making clinical decisions, includ-
ing diagnostic, prognostic, predictive, and therapeutic decisions
for primary endpoints.”® Jiang et al. employed a deep learning
approach for segmenting diffuse large B-cell lymphoma and

used an external validation cohort to demonstrate its efficacy in
prognosis. In this study, the authors constructed a 3D U-Net
based model trained on randomly sampled patches of PET
scans from 297 patients from a local center and tested the
model on 117 patients from an external center. Two expert
readers used semiautomatic segmentation on PET/CT images to
construct the ground truth using adaptive SUVmax threshold-
ing. Based on the available histopathology report and review of
other modalities, sites of suspicious uptake such as high inten-
sity normal uptake, inflammation, and infection were verified
and eliminated. Only when focal uptake was present were
measurements of the spleen, liver, and bone marrow per-
formed." Authors used intensity normalization using nnUNet
as proposed by Isensee et al. that normalizes each image by sub-
tracting its mean and then dividing by its standard deviation to
give a value of 0 to non-lymphoma voxels.*" All of the training
and testing was performed on PET images and this study did
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not use CT images. By comparing the automatic segmentation
generated from this algorithm with manual segmentation in
training and validation datasets, authors reported a median dice
similarity coefficient (DSC) of 0.88 (IQR: 0.77-0.94) and
Hausdroff distance of median: 4.12, IQR: 1.00-21.00 in training
cohort and median: 0.88, IQR: 0.74-0.93 and median: 2.83,
IQR: 1.00-38.10 in validation cohort. No significant difference
existed in similarity metrics between training and validation
cohorts. The TMTV calculated based on automatic segmenta-
tion highly agreed with TMTV from manual segmentation with
Bland-Altman biases of -3.0 (-209.2, 203.2 + 1.96 SD) and
-5.4 (-176.8, 166.1 & 1.96 SD) with 95% ClIs in the training
and validation cohorts, respectively. Therefore, the authors
argue that calculated TMTV held up as a prognostic factor of
progression free survival and overall survival.

Current State and Potential
Future Role of Al

Diagnosis and Staging

Diagnostic criteria for most hematopoietic and lymphoid tis-
sue malignancies is largely based on histopathologic (mor-
phology, immunohistochemistry and flow cytometry)
evaluation of surgically excised specimens.”” While fine-nee-
dle aspiration cytology and core needle biopsy (FNAC/CNB)
are often part of the initial evaluation of lymphadenopathy, it
has been shown that these methods reach definitive diagnosis
in 65%-75% of cases. Moreover, in cases where immediate
diagnosis is necessary, FNAC/CNB have shown to fail to pro-
vide an actionable diagnosis in a quarter of cases, which fur-
ther postpones optimal therapy. In regards to FDG avidity,
as a result of glucose uptake by proliferating lymphoma cells
or accompanying inflammatory cell infiltrates, most lympho-
mas are FDG-avid. In comparison to anatomical modalities,
FDG-PET provides a high diagnostic sensitivity in both HL
and NHL for initial detection of disease, as well as detecting
extra nodal sites of involvement used for initial staging.*’
While FDG-PET/CT is not currently used as a tool for diag-
nosis and differentiation of patients with Lymphoma, there
has been ongoing research on its potential applications.
Sasaki et al. and Yammamoto et al. reported sensitivities of
92-100 and 74%-78% for detection of lymphoma nodal and
extra-nodal lesions, respectively.***” Histology type of lym-
phoma is determinant for degree of FDG uptake, with more
aggressive types showing higher avidity.*® Weiler-Sagi et al.
in a study on 766 lymphoma patients classified the lesions as
FDG avid and non-avid."” FDG-PET showed sensitivity of
100% for Hodgkin's disease, lymphoblastic lymphoma,
nodal marginal zone lymphoma, Burkitt’s lymphoma, mantle
cell lymphoma, and sensitivity of 97% for DLBC and 95%
for follicular lymphoma.*” With regards to staging, the cur-
rent practices for both HL and NHL are primarily performed
according to the Lugano classification.” As a modification of
the Ann Arbor staging system introduced in 1971, Lugano
criteria incorporates FDG-PET/CT results to determine stag-
ing of the lymphoma.* Isasi et al. in a meta-analysis on

staging and restaging of lymphoma using FDG-PET, reported
median sensitivity of 90% and 97% for per patient unit and
per lesion unit, respectively.” FDG-PET has particularly
shown higher sensitivity compared to conventional imaging
methods for detection of bone marrow and extra-nodal
lesions in patients with Hodgkin’s lymphoma, resulting in
upstaging of these lesions in 15%-25% of cases.”® Non-FDG
avid subtypes of lymphoma are staged primarily based on
disease symptoms and anatomical imaging modalities such
as CT."® While combined FDG-PET/CT provides a great pic-
ture of anatomical and functional characteristics of lym-
phoma that is used with high sensitivity for identifying sites
of involvements, interpreting this large amount of functional
and anatomical information provides a challenging task for
radiologists. Automatic detection algorithms using artificial
intelligence can augment radiologist work and greatly con-
tribute to accuracy and speed of analyzing images.

A number of studies have investigated the application of
Al-based models applied to FDG-PET images for differentiat-
ing lymphoma from other malignancies or even from other
subtypes of lymphoma. Yang et al. investigated the utility of
ML in assessing pathologic origin of an enlarged lymph
node. Using radiomics features identified by a CNN trained
on non-medical images, 165 enlarged cervical lymph nodes
were classified into lymphomatous and metastatic with an
AUC of 0.9. Such classification algorithms can be useful dur-
ing the management of patients with confirmed diagnoses.””
For instance, when applied to interim PET imaging, these
algorithms could be used to monitor disease histopatholog-
ical transformation. In a study by de Jesus et al. the authors
trained a machine learning-based classifier using radiomic
features extracted from PET/CT scans of FL and DLBCL
lesions to differentiate between these two subtypes. The
radiomics based classifier achieved a high level of accuracy
and discriminatory capability, implying that PET/CT can pro-
vide useful information beyond staging alone. This type of
classifier could potentially aid in the diagnosis and differenti-
ation of NHL subtypes at presentation. This application
could also be used at presentation or for monitoring lym-
phoma over time. For instance, in some cases, FL can trans-
form into DLBCL. This highlights the importance of
noninvasive methods to distinguish between these two NHL
subtypes in initial stages of assessment.

Radiomic features have differentiated bulky mediastinal
lymphomas that were previously undifferentiable by imaging
methods.”' Heterogeneous FDG avidity can manifest in
FDG-PET as textural image features that in this study differ-
entiated between classical hodgkin lymphoma (cHL), pri-
mary mediastinal B cell lymphoma, and gray zone
lymphoma, which historically were not differentiable using
traditional image analysis. In this retrospective study com-
paring lymphoma and sarcoidosis, a radiomics-based
machine learning model discriminated between sarcoidosis
and lymphoma with very high accuracy equivalent to that of
trained radiologists.”” Similar methods have differentiated a
number of different tumor types including: breast carcinoma
from breast lymphoma,”” primary CNS lymphoma from glio-
blastoma,” and SCC from non-hodgkin’s lymphoma of
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oropharynx.”” These studies highlight the capability and
value of Al-based image analysis tools in the physician’s diag-
nostic workflow.

Prognosis

Great heterogeneity exists in prognosis of patients newly
diagnosed with lymphomas. Lymphomas are the optimal
tumor for which to create imaging-adapted therapy methods
due to their FDG avidity and treatment sensitivity. As the pri-
mary imaging method for the assessment of FDG-avid lym-
phomas, FDG-PET/CT imaging enables the pathophysiologic
characterization of tumor metabolic activity in the continu-
ous monitoring of lymphoma patients.”® FDG-PET/CT has
shown substantial promise in lymphoma prognostication
from early trials. This sparked a multitude of research into
interim FDG-PET/CT for informed treatment approaches to
lymphomas, notably in HL and DLBCL.”"”® For FDG-PET/
CT-based response evaluation, the Deauville five-point scale
introduced in 2009, a reproducible visual scale in the set-
ting of early response assessment, has demonstrated reli-
ability in terms of inter-observer agreement.”’?*° Other
prognostic tools developed to stratify patient management
in lymphoma include the International Prognostic Index
(IPI) and its modified forms (R-IPI, NCCN-IPI), TMTV,
and Dmax.°"%’ The use of artificial intelligence to the
prognosis of lymphoma patients has been investigated in
combination with currently available prognostic tools, to
facilitate their implementation, and as a stand-alone prog-
nostic marker.

In a study by Capobianco et.al. including 301 individuals
from the REMARC trial on DLBCL, the authors compared Al
based TMTV with manually estimated TMTV to test whether
an automatically calculated TMTV would be relevant to prog-
nosis (Fig. 1). They used a CNN to first identify all FDG-avid
regions of interest and classify each region as either suspi-
cious (ie, malignant) or non suspicious (ie, sFEPU). Then,
they summed the volumes of all suspicious regions to calcu-
late TMTV. Reference TMTV was manually determined by 2

experienced readers using an independent semi-automated
method. Automated TMTV performed well in classification
accuracy (85%) (Fig. 4) and in prognosticating progression-
free survival and overall survival (Fig. 3). For progression-
free survival the hazard ratios were 2.3 and 2.6 for the auto-
mated and semi-automated methods, respectively. For over-
all survival the hazard ratios were 2.8 and 3.7 for the
automated and semi-automated methods, respectively.’”
Although immunochemotherapy frequently yields encourag-
ing outcomes in DLBCL patients, studies have indicated that
more than 30% of individual’s relapse or develop treatment
resistance. Such studies, which enable the use of lymphoma
prognostic tools, can help patient management identify high-
risk individuals early on who may benefit from intensive or
novel therapy.

In addition to aiding in the measurement of baseline prog-
nostic indicators that use clinical parameters such as metabolic
tumor volume, lactate dehydrogenase, and number of sites of
involvement, algorithms may be taught to predict prognosis
based on only input from imaging biomarkers or combination
of imaging biomarkers and other clinical parameters. In a
study Eertink et al. investigated various models including
combinations of radiomics properties and existing clinical
models including the international prognostic index (IPI)’s
ability to predict outcomes following first-line therapy. This
study included 317 individuals with DLBCL enrolled in the
HOVON-84 trial, where 490 radiomic features were extracted
using semi-automated methods, compared and combined
with clinical models to form a prognostic model for predicting
2-year time to progression. The authors found that adding
radiomics features to IPI score prediction significantly
improved identification of patients who are at risk for recur-
rence compared to using IPI score alone.”” Despite these
improvements, radiomic models have yet to achieve a perfor-
mance level that is clinically significant.

In a more recent work the same group investigated varia-
tion in lesion and feature selection approaches in predicting
progression after 2 years. The authors compared different
lesion selection (eg,: hottest, largest, aggregate of all lesions)
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and feature selection (principal component analysis, factor
analysis, univariate selection) methods and compared the
predictive value of all models using five-fold cross-validation
approach. They concluded that lesion selection and PET fea-
ture reduction methods don’t impact the model performance
significantly and reported that patient level conventional PET
features and dissemination features have the highest predic-
tive value among the tested features.®*

Conclusion

The application of Al methods to PET imaging of lymphoma
has significantly increased over the past several years and
applies to patient care at all stages, especially prognostication.
We have highlighted key developments in Al methods
toward improving the clinical care of patients with lym-
phoma. TMTV quantifies disease burden and is directly
related to lymphoma prognosis; however, it is not directly
part of the current clinical prognostication models. Our
review shows that there is untapped value in TMTV-based
disease models. Automatic tumor segmentation has high
potential for impacting the lymphoma clinical workflow and
is a focus of future development, especially with regard to
implementing TMTV measurements.

Box [Terminologyl

Training stage To train the Al system by matching inputs
with predicted outputs using a ground-
truth dataset. At this stage, the Al will
learn to identify patterns and make pre-
dictions using gold-standard data.

Verification stage To evaluate the system’s performance at

each stage of development to ensure it
fulfills all of its defined requirements.

Validation stage To evaluate the performance of the trained
models with a validation dataset. Unlike
verification testing, validation often
occurs after the program has been
entirely developed to identify the model
with optimal performance.

To evaluate the performance of an Al
model using an external testing dataset,
separate from the training or validation
datasets. Provided that the testing data-
set is representative of the population,
the testing stage aims to produce an
unbiased estimate of model performance
in the general population.

Testing stage

Test reliability The reliability or consistency with which a
test assesses a property of the Al
system.

Test validity Validity relates to what trait the test meas-

ures and how well it reflects that feature
of the Al. Test validity offers information
on whether or not the trait being
assessed by a test is relevant to the task
performed by the Al.
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