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Abstract
Intraoperative margin analysis is crucial for the successful removal of cutaneous 
squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have 
previously demonstrated potential for facilitating rapid and complete tumour 
removal using intraoperative margin assessment for basal cell carcinoma. However, 
the varied morphologies of cSCC present challenges for AI margin assessment. The 
aim of this study was to develop and evaluate the accuracy of an AI algorithm for 
real-time histologic margin analysis of cSCC. To do this, a retrospective cohort study 
was conducted using frozen cSCC section slides. These slides were scanned and 
annotated, delineating benign tissue structures, inflammation and tumour to develop 
an AI algorithm for real-time margin analysis. A convolutional neural network workflow 
was used to extract histomorphological features predictive of cSCC. This algorithm 
demonstrated proof of concept for identifying cSCC with high accuracy, highlighting 
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1  |  BACKGROUND

Cutaneous squamous cell carcinoma (cSCC) is the second most com-
mon form of skin cancer, with more than 1 million cases diagnosed 
in the United States each year.1,2 While many tumours are isolated 
to the skin, advanced disease is not uncommon with a metastasis 
rate of 4% and a disease-specific death estimate of 2.8%.3 When 
tumours occur on the head and neck or other high-risk sites, Mohs 
micrographic surgery (MMS) is the treatment of choice. MMS allows 
for real-time margin analysis resulting in low rates of recurrence. A 
recent study by Motley and Arron found recurrence rates of cSCC of 
3% when treated with MMS and 8% when treated with standard ex-
cision, despite a higher proportion of high-risk tumours in the MMS 
group.4

Early diagnosis and treatment of cutaneous tumours is es-
sential. Currently, patient demand far outweighs the capacity of 
the dermatology workforce (Association of American Medical 
Colleges, AAMC), making early treatment more difficult.5 Machine 
learning models exist to detect basal cell carcinoma (BCC),5–7 but 
given the complexities and variable morphologies of cSCC, simi-
lar algorithms are yet to be developed for this tumour type.8 Our 
study presents an algorithm to detect cSCC on whole slide images 
(WSI) of frozen sections obtained in MMS.9 Developing such algo-
rithms can improve the accuracy and expand the applicability of 
the already tremendously efficient practice of Mohs surgery. In the 
more distant future, FDA approval and clinical implementation of 
this technology may address challenges related to clinical capacity 
in intraoperative margin assessment by enhancing access to rapid 
and reliable histologic evaluation. This holds potential for broad 
application across numerous surgical specialties that treat various 
forms of cSCC.

2  |  QUESTIONS ADDRESSED

The aim of the study was to develop and evaluate the accuracy 
of an artificial intelligence (AI) algorithm for real-time histologic 
margin analysis of cSCC. More specifically, an algorithm was 
trained to delineate benign tissue structures, inflammation and 

tumour on frozen section slides obtained from a MMS clinic. A 
convolutional neural network (CNN) workflow was used to extract 
histomorphological features predictive of cSCC at 50-micron 
resolution, and area under the receiver operating curve (AUC) was 
used to assess model performance.

3  |  E XPERIMENTAL DESIGN

Tissue specimens were collected at a local MMS clinic in Lebanon, 
NH. Given the retrospective nature of this work, Human Research 
Protection Program of Dartmouth Health (Institutional Review 
Board) gave ethical approval for this work. Tissue was grossed, 
sectioned and stained during MMS, with WSI scanning (20X 
resolution using the Aperio AT2 image scanner) of 95 frozen section 
slides, each containing 3–5 tissue sections, followed by manual 
annotation of benign tissue structures, inflammation and tumour by 
three dermatologists and dermatology residents. The frozen section 
slides were obtained from a single site MMS clinic from 1 January 
to 1 March 2020. Every slide that was deemed appropriate for final 
interpretation was scanned to generate a WSI. ASAP annotation 
software (Computational Pathology Group, Nijmegen, Netherlands) 
was used to generate all annotations. Many of the annotations were 
performed by dermatology residents, but all were confirmed by a 
board certified Mohs surgeon. Upon further review, the residents 
and surgeon also noted a few instances (n = 3) where slides had 
significant tissue freezing artefacts and quality issues that impacted 
the ability to annotate tissue slides—these slides were excluded from 
the study.

WSIs were then split into 256 × 256-pixel image patches (i.e. 
50-micron resolution). Patches were randomly distributed into train-
ing, testing and validation sets in an 80:10:10 arrangement, ensuring 
patches/slides from the same patient were partitioned to the same 
set (e.g. restricting all patches across all tissue sections for one pa-
tient to the validation set only). The random assignment of patients 
maintained a similar distribution of tumours based on their differen-
tiation status. To classify tumours at the patch level, a CNN workflow 
was implemented, using a ResNet101 model that was pre-trained 
and selected after comparing multiple neural network architectures 

the potential for integration of AI into the surgical workflow. Incorporation of AI 
algorithms may improve efficiency and completeness of real-time margin assessment 
for cSCC removal, particularly in cases of moderately and poorly differentiated 
tumours/neoplasms. Further algorithmic improvement incorporating surrounding 
tissue context is necessary to remain sensitive to the unique epidermal landscape of 
well-differentiated tumours, and to map tumours to their original anatomical position/
orientation.

K E Y W O R D S
artificial intelligence, clinical research, general dermatology, medical dermatology, Mohs 
micrographic surgery, oncology
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(e.g. SWIN-Transformer, EfficientNet).10 The CNN workflow dy-
namically extracts histomorphological features at each 50-micron 
location, generating a probability score for cSCC between 0 and 1.11 
After the model was trained and validated, its performance charac-
teristics were evaluated across the validation and testing sets using 
the AUC, a performance metric that summarizes algorithmic sensi-
tivity and specificity across a range of decision thresholds, with 95% 
confidence intervals reported using 1000-sample non-parametric 
bootstrapping.

As distinguishing cSCC from epithelial tissue based on histo-
morphology alone (i.e. what can be learned by a CNN) can be 
challenging, particularly in moderate-well to well-differentiated 
squamous cell tumours, we hypothesized that the algorithm would 
not perform as well in these cases. To test this hypothesis, we 
annotated the epithelial tissue within the well-differentiated tu-
mours in our cohort and compared the sensitivity and specificity 
of cSCC detection at 50-micron locations containing either cSCC 
or epithelium alone. To improve algorithmic performance in distin-
guishing cSCC from epithelium in well-differentiated tumours, we 
incorporated larger-scale architectural features beyond histomor-
phology. Specifically, we examined topological and shape descrip-
tors, referred to as ‘architectural features’, of cSCC and epithelial 
tissue across the training, validation and test sets.12,13 Topological 
and shape (i.e. architectural) features capture the relationships be-
tween tissue architectures and their shape properties. For instance, 
when viewed under a microscope, the epidermis typically appears 
flat or slightly curved, and may also have ridge-like features in cer-
tain areas; in contrast, cSCC is often characterized by a more dis-
cohesive and infiltrative growth pattern. The architectural features 
are numerical descriptors which encapsulate topological and shape 
differences and were used to train a random forest model for the 
purpose of distinguishing between SCC and epithelium. In addition, 
we incorporated a graph neural network (GNN) to consider con-
textual information from adjacent image patches.14,15 A GNN is a 
type of neural network designed to operate on graphs and capture 
complex relationships and interactions between the nodes and 
edges of a graph. Unlike traditional neural networks that operate on 

vectorized inputs, GNNs can process structured data, which is use-
ful for a variety of tasks such as node classification, link prediction 
and graph clustering. For example, GNN increases the probability of 
classifying an image patch as epithelium if the surrounding patches 
were also classified as epithelial. We compared the performance of 
the architectural and GNN models to that of the CNN workflow to 
show how using the surrounding tissue architecture improves the 
accuracy of distinguishing SCC from epithelium in well-differenti-
ated tumours.

While our study used relatively high-quality slides deemed ap-
propriate for real-world complete margin analysis by a Mohs sur-
geon, recent studies have shown that similar algorithms are able to 
perform well even on fragmented low-quality frozen specimens.16 
Despite this, our team believes that identifying holes/fragmentation 
is perhaps more important in this clinical context, as additional tissue 
sections are required if any epidermis is missing or if any significant 
holes or processing artefact is present. In a previous work, we devel-
oped an algorithm to detect holes on frozen section tissue with the 
intent of flagging slides that require further reprocessing.6

4  |  RESULTS

The algorithm achieved an AUC of 0.981 (95% CI [0.980–0.982]) and 
0.935 (95% CI [0.934–0.936]) for predicting cSCC when applied to 
the validation and test sets, respectively. As expected, the model 
performed better on poorly to moderately differentiated tumours 
(AUC = 0.968, 95% CI [0.953–0.980]) than on well-differentiated 
tumours (AUC = 0.895, 95% CI [0.837–0.943]) (Table 1; Figure 1; 
Figures S1–S3). The difficulty in distinguishing normal epidermis 
from cSCC contributed to these deficiencies, yielding an AUC of 
0.626 (95% CI [0.594–0.658]) when distinguishing cSCC from epi-
thelium alone in well-differentiated tumours (Figure 1). However, 
incorporating architectural (AUC = 0.760; 95% CI [0.728–0.792]) and 
contextual (GNN; AUC = 0.764; 95% CI [0.729–0.796]) features sig-
nificantly improved the algorithm's performance in delineating cSCC 
from epidermis (Table 1; Figure 2).

TA B L E  1  Performance characteristics for SCC algorithm, considering histomorphological (CNN), architectural (topology/shape) and 
contextual (GNN) features across the validation and test sets, broken down by overall performance, tumour differentiation status and 
restricting to SCC/epithelium within well-differentiated test set tumours; 95% confidence intervals reported using 1000-sample non-
parametric bootstrapping.

Dataset Algorithm AUC 2.5% CI 97.5% CI

Validation Set: Overall CNN/Morphology 0.981 0.980 0.982

Test Set: Overall CNN/Morphology 0.935 0.934 0.936

Poor/Mod-Poor/Mod-Diff CNN/Morphology 0.968 0.953 0.980

Mod-Well/Well-Diff CNN/Morphology 0.895 0.837 0.943

cSCC versus Epidermis within Mod-Well/Well-Diff CNN/Morphology 0.626 0.594 0.658

RF/Architecture 0.760 0.728 0.792

GNN/Context 0.764 0.729 0.796

Abbreviations: CNN, convolutional neural network; cSCC, cutaneous squamous cell carcinomas; GNN, graph neural network; RF, random forest.
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5  |  CONCLUSION AND PERSPEC TIVES

Our study provides an example of a deep learning algorithm used to 
identify cSCC on frozen section slides in MMS. Reducing rate limiting 

steps to intraoperative margin assessment of cSCC tumours can im-
prove the efficiency and completeness of tumour removal, reducing 
the burden on laboratory staff while reducing tumour recurrence 
and repeat procedures.17–19 When evaluating this study, it should be 

F I G U R E  2  Example display output of cutaneous squamous cell carcinomas (cSCC) prediction probabilities at 50-micron resolution for 
cSCC/Epithelium predictions across example test-set WSI for well-differentiated tumour: (A) original WSI; (B) ground truth cSCC; (C) cSCC 
convolutional neural network (CNN) algorithm predictions (histomorphology); (D) topological and shape features (architecture); (E) graph 
neural network (GNN) predictions (contextual).

F I G U R E  1  Example display output of cutaneous squamous cell carcinomas (cSCC) prediction probabilities at 50-micron resolution for 
example test-set WSI: (A) original WSI; (B) ground truth cSCC; (C) cSCC algorithm predictions.
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acknowledged that all slides were obtained from a single MMS clinic 
and scanned images, not slides, were used for training, which may 
limit generalizability and real-world implementation. Application of 
this algorithm requires complete, high-quality tissue sections devoid 
of tears, holes and other artefacts which may preclude histologi-
cal margin assessment. Our data provide evidence supporting the 
identification of cSCC on frozen section slides, which has historically 
proven challenging. The algorithm's successful performance in this 
study suggests its potential for broader use in providing real-time 
complete margin analysis of cSCC in various body parts.

While slides containing incidental diagnoses such as actinic ker-
atosis and SCC in situ were not excluded from the analysis, our algo-
rithms were not explicitly trained to identify these diagnoses. In the 
future, the focus will be on refining and improving the algorithm's 
accuracy to enable more detailed identification of various associated 
histopathologic features, including single cell analysis, follicles, ac-
tinic keratosis and incidental diagnoses (e.g. SCC in situ). Additionally, 
efforts will be made to map tumours to their original anatomical po-
sition/orientation and evaluate the efficiency improvements and 
cost benefits of this algorithmic approach. Thorough evaluation of 
implementation barriers and indicators of cost-effectiveness will 
motivate integration of these algorithms into the clinical workflow.20 
Such studies necessitate a detailed analysis of existing bottlenecks, 
guiding us to the most suitable places for integrating AI technologies. 
For example, previous studies have shown that suboptimal specimen 
quality, like fragmented tissue samples, has limited impact on identi-
fying positive margins. This is partly because it signals the Mohs sur-
geon to possibly extract additional sections from the tissue block or 
resected tissue for a more comprehensive evaluation.6,16 However, 
cutting additional tissue sections could introduce further bottle-
necks when using AI tools for intraoperative assessment. Yet, some 
prior research has suggested that AI might expedite the decision on 
when to section blocks.6,21,22 The prevalence of low-quality sections 
can differ among institution, thus influencing their impact. This vari-
ability warrants further investigation.

Moving beyond frozen section slides, future research may also 
be focused on the use of machine learning algorithms in non-inva-
sive diagnostic techniques, such as reflectance confocal micros-
copy (RCM). Such advanced techniques require significant training 
to attain sufficient diagnostic accuracy to be practically useful, but 
with advances in machine learning applications, RCM may be more 
widely accessible. Nascent AI techniques are capable of generating 
H&E-like digital images from RCM images—these synthetic images 
could be trained and assessed using the algorithms featured in this 
work, potentially obviating the need for frozen sections. A recent 
review article assessing the advancements in this space and poten-
tial future research highlights the accuracy and promise of machine 
learning algorithms applied to RCM.23 However, similar to the use of 
machine learning algorithms for assessment of frozen section slides, 
additional research and randomized controlled trials using the tech-
nology are required before widespread application is possible.

This study not only established the general feasibility of histo-
morphological cSCC detection incorporating AI algorithms, but also 

demonstrated challenges in effectively distinguishing epithelium 
tissue from cSCC in well-differentiated cases. Therefore, algorithms 
that consider the surrounding tissue architecture could be useful for 
these tumours, although further research is necessary to improve the 
ability to utilize spatial cues. Furthermore, different tumour types 
may necessitate different algorithms. Future research will also ad-
dress other confounding histopathologic features, such as inflamma-
tion, nuclei, follicles, architecture and keratinocyte differentiation, by 
considering nuclei and large-scale architectural features.
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