Introduction to NMR

Physical principles Skejby Sept. 2003 Sune N. Jespersen

MRI of the human brain

Basic steps

By means of magnetic fields and RF pulses
Data processing (Fourier transformation)

Outline

- Nuclear spins
- Spin dynamics in magnetic fields
- Spin interactions
- Spin excitation
- Spin RF radiation and detection

Spin and magnetic fields

Proton

Permanent Magnet (dipole) A charged proton that spins will create a circulating current which in turn induces a magnetic field.

The dipole vector **µ** describes the strength and direction of magnetic field. C.g. permanent magnet.

Spin is a fundamental quantum mechanical property. All nuclei (and other particles) have spin:

S=0,1/2,1,3/2.... h/2π (Planck'sconstant).

For S=I there are 2I+1 states, corresponding to the possible orientations of the spin.

Spin and magnetic field

T=Tesla. 1 Gauss=10000 The fundamental Tesla. Earths magnetic field is roughly .5 Gauss. γ (gamma) is the A clinical scanner has 1.5 depends on the n Tesla, i.e. 30000 times 2,675*10⁸ rad/s/T. the earths magnetic field.

Only nuclei with non-zero spin nave magnetic moments, and are thus NMR active.

Spins in external fields

A magnetic dipole ten field (e.g. a compass Thermal motion oppo M (magnetization) is the magnetic dipole moment per unit volume.

ernal eld).

Magnetization

M is the sum of the individual spin magnetic moments.

Spin dynamics

Larmor frequency

ω is the Larmor frequency: $ω_0 = γB_0$ For protons in a clinical scanner, $B_0 = 1.5T$ so $ω_0 = 63.87$ Mhz. Compare

DRP1@88.1Mhz.

Magnetization

Magnetization M is:

 $M_z = M_0$

$$M_{xy}=0$$

Transverse magnetization is zero because of random phases.

Radio-frequency pulses

Radio waves at Larmors frequency force protons to precess in phase antiparallel or parallel to B0

RF pulses and magnetization

Spin interactions

Instead of precessing forever in the transverse plane, the magnetization <u>relaxes</u> back to the equilibrium value.

T1 and T2 are characteristic relaxation constants.

T2 and T2*

T2 dephasing

The dephasing in T2 relaxation results from differing local interactions, leading to locally varying Larmor frequencies. T2* is the same phenomenon, but is a result from magnetic field inhomogeneities.

Biological T1-T2 values

TISSUE	T1 at 1.5 T (ms)	T1 at 0.5 T (ms)	T2 (ms)
Skeletal muscle	870	600	47
Liver	490	323	43
Kidney	650	449	58
Spleen	780	554	62
Fat	260	215	84
Grey matter	920	656	101
White matter	790	539	92
Cerebrospinal fluid	>4000	>4000	>2000
Lung	830	600	79

Spin RF radiation and detection

Law of induction: changing magnetic field induces electromotoric force. From M_{xy}

Detected by RF coil and measured as a time varying current. Decays according to T2*. What about T2? **Spin echo**

Spin echo

- Or spin refocussing

[90]-TE/2-[180]-TE/2-ECHO

Pulse sequences and contrast

By using different pulse sequences, one can create contrast on the basis of e.g. T1, T2, T2* or spin density.

Spin echo:

$$S = \rho \cdot (1 - e^{-TR/T_1}) \cdot e^{-TE/T_2}$$

Overview

Generation of a NMR-spectrum

