Differential Diagnosis of T2 Hyperintense Brainstem Lesions: Part 1. Focal Lesions

Juan A. Guzmán-De-Villoria, MD,* Pilar Fernández-García, MD, † and Concepción Ferreiro-Argüelles, MD ‡

Brainstem lesions can be classified as focal or diffuse. Magnetic resonance imaging is the most suitable imaging modality for evaluating these lesions. As a rule, focal lesions are not large and have well-defined margins. Causes include tumors, vascular malformations, demyelinating diseases, brain abscesses, hypertrophic olivary degeneration, and dilated Virchow–Robin spaces. Differential diagnoses of these numerous entities mandates a review of magnetic resonance imaging findings in conjunction with epidemiologic aspects, clinical features, and other medical test results.

Semin Ultrasound CT MRI 31:246-259 © 2010 Elsevier Inc. All rights reserved.

Magnetic resonance imaging (MRI) is the most sensitive and specific technique for diagnosing disorders of the posterior fossa and the brainstem (BS) in particular. Visualization of this area of the body by computed tomography (CT) is difficult because of the presence of bone-hardening artifacts. Entities visible in the BS are highly diverse in their natures as well as treatment and prognosis, and they can often pose a challenge for radiologists. The object of this article is to list diagnostic guidelines focusing on key imaging, epidemiologic, and clinical features as an aid to arriving at differential diagnoses of BS lesions visualized by MRI.

To this end, BS lesions have been divided into 2 main groups, focal and diffuse, with each group being considered separately in the following 2 articles. Lesion margin was the imaging criterion used for classification because focal lesions have a well-defined border. As a rule such lesions are small, affecting only a single segment of the BS. The proposed classification of BS lesions is intended to help facilitate diagnosis by using this relatively simple imaging criterion, readily discernible by radiologists but relatively nonspecific, hence as a result each group encompasses a range of different disorders.

The list of pathologic entities set forth in this and the following discussion is not intended to be exhaustive but rather to be sufficiently ample to cover most of the lesions likely to affect the BS (Table 1 and Fig. 1). Additionally, classification as a focal or diffuse lesion is determined on the basis of MRI findings, and hence one and the same disorder, such as gliomas, can fall within both of these proposed groupings.

Focal BS Tumors

This group includes tumors having well-defined margins affecting at least one half of the BS segment in which they are located, although they may extend longitudinally into a single adjacent segment provided that the margins remain well defined and that the tumor compresses and displaces, rather than infiltrates, the adjacent cerebral parenchyma.

Patient age is the first factor to be considered when diagnosing a focal BS tumor. Gliomas are the most common neoplasm in children, comprising nearly 90% of tumors of the BS during childhood. These tumors may be located in any part of the BS but are most commonly found in the midbrain and the medulla. Where the midbrain is affected, involvement of the ventral portion, ie, the cerebral peduncle, is rare. Certain locations are highly characteristic, for example, tectal gliomas (Fig. 2A) and gliomas of the cervicomedullary junction with posterior exophytic expansion into the fourth ventricle or below the cerebellum.

Clinical findings for patients vary with tumor location. Accordingly, focal midbrain gliomas located in the tectum will give...
<table>
<thead>
<tr>
<th>Entity</th>
<th>Epidemiology</th>
<th>Clinical Symptoms</th>
<th>Location</th>
<th>Key MRI Findings</th>
<th>Other Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal glioma</td>
<td>Children: 5-10 years old</td>
<td>Indefinite depending on location</td>
<td>Children: midbrain and medulla.</td>
<td>Nonenhancing in children</td>
<td>Tectal tumors benign in appearance and course in children and young adults</td>
</tr>
<tr>
<td></td>
<td>90% BS tumors are gliomas</td>
<td></td>
<td>Cerebroventricular junction (exophytic). Tectal plate</td>
<td>Enhancement and necrosis in adults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adults: 40-60 years old</td>
<td></td>
<td>Adults: pons. Tectal plate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><2% of all gliomas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><3 years old</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNET</td>
<td>Indefinite depending on location</td>
<td>Pons</td>
<td></td>
<td>Nonenhancing</td>
<td>Dissemination via CSF</td>
</tr>
<tr>
<td>Dermoid/epidermoid</td>
<td>Indefinite, variable</td>
<td>Prepontine cistern invading the pons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis</td>
<td>>45 years old</td>
<td>Indefinite depending on location</td>
<td>Pons</td>
<td>Nonenhancing</td>
<td></td>
</tr>
<tr>
<td>Arterial infarctions</td>
<td>>45 years old plus cardiovascular</td>
<td>Indefinite depending on location</td>
<td>Pons</td>
<td>Nonenhancing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk factors, heart disease, vascular dissection, or dolichoectasia</td>
<td>Anteromedial, anterolateral, lateral, posterior vascular territories</td>
<td>Deep lesion where affected vessel is small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVA</td>
<td>20-50 years old</td>
<td>Mostly asymptomatic</td>
<td>Adjacent to fourth ventricle, brachium pontis or dentate nucleus</td>
<td>Dilated medullary veins (caput medusae) converging on a single drainage vein</td>
<td>Associated with CM (more frequently) or capillary telangiectasia</td>
</tr>
<tr>
<td>Capillary</td>
<td>Mostly asymptomatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>telangiectasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>30 years old</td>
<td>Recurring-remitting clinical symptoms</td>
<td>Pons > midbrain > medulla</td>
<td>“Popcorn-like” structure</td>
<td>Multiple CMs in sporadic and familial forms</td>
</tr>
<tr>
<td></td>
<td>5%-10% of all vascular</td>
<td></td>
<td></td>
<td>Hyperintense center on T1 and T2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>malformations (18%-35% in BS)</td>
<td></td>
<td></td>
<td>(methemoglobin)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hypointense margins on T2 (thromosiderin)</td>
<td></td>
</tr>
<tr>
<td>Capillary</td>
<td>Mostly asymptomatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>telangiectasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVM</td>
<td>20-30 years old</td>
<td>Acute clinical situation due to bleeding</td>
<td>Midbrain > pons > medulla</td>
<td>Abnormal vessels exhibit</td>
<td>Hemorrhagic signs where bleeding occurs</td>
</tr>
<tr>
<td></td>
<td>2%-6% of all intracranial AVMs</td>
<td></td>
<td></td>
<td>signal void or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hyperintense on T1 and/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or T2 where there is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>turbulent flow or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>thrombosis</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>15-45 years old</td>
<td>Recurring-remitting clinical symptoms</td>
<td>Floor of fourth ventricle or</td>
<td>Small lesions</td>
<td>Lesser tendency to form</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>surface of pons</td>
<td>Active lesions are enhancing</td>
<td>“black holes” on T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less hyperintense on T2, less well defined than supratentorial lesions</td>
</tr>
<tr>
<td>ADEM</td>
<td>Children and young adults</td>
<td>Preceded by pseudoinfluenza</td>
<td>Nonspecific</td>
<td>Single or multiple lesions</td>
<td>Concomitant involvement of cerebellum, basal ganglia or thalamus</td>
</tr>
<tr>
<td></td>
<td>Infection or vaccination 1-3 wks</td>
<td>symptoms</td>
<td></td>
<td>variable in size</td>
<td>Periventricular cerebral white matter spared (MS)</td>
</tr>
<tr>
<td></td>
<td>earlier</td>
<td>Recurring clinical symptoms</td>
<td></td>
<td>May be enhancing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monophasic (+ Fr.) or multiphasic</td>
<td></td>
<td>↑ ADC for acute lesions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MDEM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscesses</td>
<td>Indefinite depending on location</td>
<td>Pons</td>
<td>Ring-shaped uptake</td>
<td>MRS: lactate, succinate, amino acids</td>
<td>Rule out primary focus of infection in parasal, sinuses, middle ear, or teeth</td>
</tr>
<tr>
<td></td>
<td>cranial nerve pair VI and VII</td>
<td></td>
<td>vasogenic edema</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>involvement</td>
<td></td>
<td>↑ ADC except</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOD</td>
<td>Palatal tremor</td>
<td>ION:</td>
<td>ION hyperintense on T2 > 3-4 weeks-indefinitely</td>
<td>Hypertrophy ION 8 mo to 3/4 years</td>
<td>Triggining lesions Atrophy of cerebellar cortex and contralateral DN</td>
</tr>
<tr>
<td></td>
<td>Nystagmus</td>
<td>ipsilateral (CTT lesion)</td>
<td>Nonenhancing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypermetropic or torsional saccades</td>
<td>contralateral (DN or SCP lesion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipsilateral (SCP and CTT lesion)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Conclusions of Focal BS Lesions That Are Hyperintense on T2-Weighted Imaging
rise to signs of hydrocephalus, namely, headache, vomiting, and papilledema. Gliomas located in the tegmentum will cause dys-
function of the oculomotor nuclei and their connecting fibers.
Signs of ataxia will be present in the case of extension towards
the superior cerebellar peduncle.4,5 Gliomas located in the cer-
vicomedullary junction will exhibit signs of lower cranial nerve
and pyramidal tract involvement.5

Nonenhancement is an imaging finding that is very useful
in differentiating this type of lesion from other forms of neo-
plasm or even from pseudotumors.4,6 However, although an
absence of enhancement is the norm, there are exceptions.5
Enhancement in these cases may be ringlike or spotty, a
finding that has been associated with aggressive tumors.3
Exophytic cervicomedullary gliomas are a special case in
which, characteristically, peripheral enhancement is seen
with enhancement of the solid parts of the tumor even
though they are low-grade astrocytomas.6

Primitive neuroectodermal tumors (PNETs) are another
type of neoplasm that can be found in children. This tu-
mor diagnosis should be considered in children younger
than 3 years,7 whereas tumors in children who are a little
older, between 5 and 10 years of age, tend to be gliomas.8
PNETs are most commonly located in the pons, where,
unlike PNETs located elsewhere, these lesions are not
usually enhancing.7 This diagnosis must be considered
when leptomeningeal dissemination through the CSF is
detected.7

Epidermoid/dermoid tumors of the BS are rare; only 12
cases described in the literature have been located in the BS,8
with one half of these cases presenting in children. The clinical
findings that have been described are nonspecific, and
patients may be asymptomatic or, conversely, may exhibit
prominent deficits and/or recurrent meningitis.8 Location in
the pontine cistern with intraaxial invasion of the adjacent
portion of the pons is a radiological feature that is rather
suggestive of this type of lesion.8 This behavior is thought to
be related to the nature of these lesions, which, as remnants
of embryonic ectodermal tissue, are considered to spread
intraxially along Virchow–Robin spaces. Their imaging fea-
tures are similar to those of the other epidermoid cysts of the

Table 1 Continued

<table>
<thead>
<tr>
<th>Entity</th>
<th>Epidemiology</th>
<th>Clinical Symptoms</th>
<th>Location</th>
<th>Key MRI Findings</th>
<th>Other Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated VR Spaces</td>
<td>Advanced age</td>
<td>Asymptomatic Sometimes hydrocephalus</td>
<td>Region: ● pontomesencephalic ● midbrain-diencephalic ● midbrain-thalamus</td>
<td>Signal similar to CSF on all sequences</td>
<td>May be multiseptate Gliosis sometimes produces peripheral hyperintense on T2</td>
</tr>
</tbody>
</table>

Figure 1 Differential diagnostic algorithm for focal BS lesions that are hyperintense on T2-weighted imaging. ADC, apparent diffusion coefficient; ADEM, acute disseminated encephalomyelitis; AVM, arteriovenous malformation; BS, brainstem; CSF, cerebrospinal fluid; GE, gradient echo; Hypoi, hypointensity; MS, multiple sclerosis; PNET, primitive neuroectodermal tumor.
posterior fossa: they have multilobulated borders and a signal like that of cerebrospinal fluid (CSF) on T1- and T2-weighted sequences and signal hyperintensity on fluid attenuation inversion recovery (FLAIR) sequences. They are nonenhancing after administration of gadolinium chelating agents and display restricted diffusion.

Unlike the situation in children, the vast majority of tumor lesions that will be identified in the BS in adults will display enhancement. Metastasis is one of the initial diagnoses to be considered because of relative frequency. The actual incidence of brain metastases is not accurately known, although postmortem examinations have shown metastasis to be present in 24% of cancer deaths. Incidence increases with age, chiefly after age 45. Metastases in the BS account for approximately 3% to 5% of all brain metastases. Imaging findings in the BS are similar to those in other locations. The presence of multiple lesions and imaging signs of aggressiveness (necrosis, enhancement, bleeding, and edema) and a medical history of a known primary tumor can help guide a diagnosis.

Hemangioblastoma must be considered when evaluating young adult/middle-aged patients. On average, the age at diagnosis of this type of neoplasm ranges between 40 and 55 years of age. This benign tumor accounts for 1.1% to 2.4% of all tumors of the nervous system and 7.3% of all tumors of the posterior fossa in adults. There are several key features that are helpful in diagnosis. Lesions often have epicenter at the area postrema of the medulla oblongata, that is, near the floor of the fourth ventricle. There is a pathognomonic radiological finding: identification of a cystic lesion with a mural nodule fed by enlarged blood vessels. Instead of a cyst, there may be a cavity (syringobulbia), similar to the large syringomyelic cavities that may be found in spinal hemangioblastomas. Variations on these imaging findings may also arise. For instance, the macroscopic blood vessels seen in magnetic

Figure 2
(A) Tectal glioma. Coronal T2-weighted image (left) shows a well-circumscribed, slightly hyperintense mesencephalic tectal and tegmental mass. Axial gadolinium T1-weighted image (right) demonstrates expansion into the mesencephalic tegmentum on the right side by a sharply delineated hypointense mass. No enhancement is present.

(B) Multiple metastases (breast adenocarcinoma). Axial FLAIR (left) shows pontine hyperintense round focal lesion without edema. Multiple similar lesions can be seen at gray-white matter junction in both cerebellar hemispheres. Axial gadolinium T1-weighted image (right) shows ring-enhancing lesions.
resonance (MR) may not be visualized in tumors smaller than 10 to 15 mm.15,17 Initially, this type of tumor begins as a solid growth with strong enhancement followed by the appearance of an internal enlarging cyst that increases in size until a nodule can be seen around the peripheral portion of the predominant cyst.18

It should be noted that between 5% and 30% of hemangioblastomas are associated with von Hippel–Lindau disease (VHL).16 This autosomal-dominant genetic disorder may be suspected on the basis of family history or radiological findings. The presence of multiple hemangioblastomas in the posterior fossa or medulla is more common in these patients, and other cranial or extracranial pathologies may also be present (retinal hemangioblastomas, renal cysts or carcinomas, pancreatic cysts, or papillary cystadenoma of the epididymis).16 Endolymphatic sac tumors are also quite characteristic. Hemangioblastoma onset occurs some 10 to 15 years earlier in VHL patients than in patients with sporadic hemangioblastomas.14

Contrary to the situation in children, BS gliomas are uncommon in adults. They comprise fewer than 2% of all gliomas,19 and of these, approximately 40% can be considered focal.20 Generally speaking, the pons is the most common location.20 This type of tumor comprises 2 groups. Group 1 is composed of malignant adult gliomas of the BS. This type of tumor appears as a mass with generally peripheral enhancement and necrosis. Histologically, they are anaplastic astrocytomas or oligodendrogliomas with a poor prognosis. They ordinarily present in patients older than 40 years of age, primarily in patients in their 60s.20 Group 2 are focal tectal gliomas. They are identical in appearance to their counterparts in children. Identification of these tumors is based on their location, in these lesions are clearly confined within the tectal plate, sometimes evincing posterior exophytic growth;21 their benign appearance (no necrosis, hemorrhage, or enhancement); and their indolent course.20 Clinical symptoms feature hydrocephalus.6

Arterial Infarction

BS infarction accounts for approximately 10%21,22 of brain infarcts. Accordingly, in view of the high incidence and prevalence of ischemic brain lesions in the general population, infarcts will be one of the most frequent entities encountered in the BS. Patients presenting with this type of disorder are generally older than 45 years of age,23,24 with cardiovascular risk factors (arterial hypertension, diabetes mellitus, a smoking habit, hyperlipidemia), heart disease requiring anticoagulant therapy (atrial fibrillation, patent foramen ovale, etc.), or a vascular pathology of the vertebrobasilar system, such as vertebral/basilar artery dissections or dolichoectasias.24,25 Arterial hypertension is the vascular risk factor most commonly associated with BS infarction22 and is present in up to 68% to 73% of cases.21,24,25

Arterial infarcts may appear in any BS segment, with the pons being most frequently involved, followed by the medulla and then the midbrain.21,22 As a rule these patients present with clinical features consistent with acute neurologic deficit depending on lesion topography, and hence features are highly variable.24,26 From an imaging standpoint, it is important to assess lesion morphology and location, with the distribution of lesions being associated with the different vascular territories, which can be grouped into 4 regions:27 anteromedial, anterolateral, lateral, and posterior. The surface and morphology of each of these areas varies according to the level that is examined. Generally speaking, these territories have well-defined borders on either side on the basis of imaginary lines drawn from the anterior surface to the posterior surface of the BS. Anteromedial lesions do not extend past the midline, although it should be borne in mind that bilateral infarction is not uncommon in this territory.26 It also needs to be considered that in most cases infarcts will affect several territories24,25,28 and will extend cranially or caudally into other BS segments or even into other tributary structures of the posterior circulation, such as the cerebellum, thalamus, or occipital lobes.25

However, the lesions produced by the occlusion of very small perforating vessels are very small (<1.5 mm) deep lacunar infarcts24,25 with highly nonspecific MR findings. These lacunar infarcts account for most ischemic lesions of the BS.21,24,25

In all cases where ischemic brain infarction is suspected, it is essential to perform diffusion-weighted imaging (DWI) sequences. The findings will depend on the time elapsed from the onset of clinical symptoms (Fig. 3A and B). A reduction in apparent diffusion coefficient (ADC) values can be seen as little as 3 hours after onset,21 a finding that is highly specific for acute infarction. However, greater proportions of false-negative results have been recorded for diffusion studies in the first 24 hours in cases of acute infarction of the posterior circulation, and particularly of the BS.29 Therefore, FLAIR sequences may visualize lesions but not demonstrate restriction of diffusion soon after clinical onset.29 In cases like this, it is advisable to repeat the MR scan 24 hours after the acute event to increase the sensitivity of the diffusion sequences.29

The high percentage of false-negative results in the BS obtained by the use of DWI is thought to be attributable to low spatial resolution for detecting small lacunar infarcts and magnetic susceptibility artifacts present in the posterior fossa on the echo-planar sequences commonly used in diffusion studies.29,30 This behavior is also thought to be ascribable firstly to the fact that BS neurons are more ischemia resistant and secondly to the existence of a well-developed network of collateral perforating vessels in this region.21

When MR is not performed until more than 14 days after the acute event, ADC values may be similar to those for healthy tissue,31 a phenomenon known as “pseudonormalization” produced by concomitant vasogenic and cytotoxic edema. In such cases it should be noted that the infarct identified on the T2-weighted or FLAIR sequences exhibits increased signal intensity on DWI,31 even though ADC maps are not revealing.
Vascular Malformations

Four types of vascular malformations in the central nervous system are commonly described: venous angioma or developmental venous anomaly (DVA), cavernoma or cavernous malformation (CM), capillary telangiectasia, and arteriovenous malformation (AVM). All occur in the BS, but fortunately diagnosis on the basis of MRI findings is usually possible.

DVA is the most frequent vascular malformation, accounting for 50% to 63% of all vascular malformations and reported to be present in 2.5% of postmortem examinations. Approximately 2% to 3% of cases are found in the BS. This entity usually appears in patients between the ages of 20 and 50. In most cases, DVAs are asymptomatic, although associations with neurological clinical symptoms, such as seizures, headache, and neurological deficits, or abnormalities caused by the mass effect, for instance, hydrocephalus caused by obstruction of the aqueduct of sylvius, have also been described. By contrast, DVAs do not exhibit signs of complications like rupture or hemorrhage.

On MRI, DVAs exhibit a characteristic appearance. They consist of a network of dilated medullary veins, conventionally known as caput medusae because of the resemblance in their appearance, converging on a single, or sometimes multiple, enlarged drainage vein. This abnormality generally exhibits low signal intensity on T1-weighted images, and the drainage vein may display signal hyper or hypointensity on T2-weighted sequences depending on the flow rate, orientation, or pulse sequence used. DVA is clearly identified on sequences with intravenous contrast, which reveal enhancement by the abnormal venous structures.

In some cases, and particularly on T2-weighted images, the dilated drainage vein may stand out more than the small vascular structures comprising the caput medusae. In these cases it may be helpful to review the location and direction of the drainage veins, which will ordinarily be the veins one would expect on the basis of normal venous anatomy. Therefore, because DVAs in the BS are usually located adjacent to the fourth ventricle, in the brachium pontis (or middle cerebellar peduncle) or the dentate nucleus, the drainage veins are as follows: (1) anterior transpontine vein, which crosses the pons along the midline from the subependymal region of the fourth ventricle; (2) lateral transpontine vein, which follows a path similar to that of the preceding vein but is in a more lateral position; (3) vein of the lateral recess of the fourth ventricle, running towards the...
anterior pial surface of the pons-brachium pontis from the lateral recess of the fourth ventricle; (4) longitudinal intrategmental vein running longitudinally in the tegmentum of the pons and the midbrain parallel to the aqueduct; and (5) deep medullary veins running to the lateral recesses of the fourth ventricle from the brachium pontis or dentate nucleus.34

The prevalence of cavernous malformation in the general population is 0.4% to 0.9%,37 approximately 18% to 35% located in the BS.38 CM accounts for 5% to 10% of all malformations of the central nervous system.39 Unlike other vascular malformations, such as DVA and capillary telangiectasias, there is a clear association between this vascular malformation and the presence of neurological deficits resulting from the affected BS nuclei and pathways.38-41 This is because over its natural course, CM has a tendency to bleed, estimated at 2.4% to 6% patient/year,38-40,41 a risk that increases to 21% to 60% in cases of rebleeding.39-41 Because of this behavior clinical, onset tends to be acute, after which there is ordinarily a period of recovery or possibly a succession of episodes of relapse or new symptoms caused by rebleeding, simulating clinical episodes of recurrence and remission like those commonly identified in multiple sclerosis (MS).41 This type of malformation usually first manifests itself clinically at around 30 years of age.38,40,41

The typical cavernoma has what has been described as a “popcorn-like” or “mulberry-like” appearance on MR thanks to the existence of multiple hemorrhages in differing stages (Fig. 4B). It thus takes the form of a nodular lesion with areas of heterogeneous high-signal lesions on T1- and T2-weighted sequences, surrounded by a circular or irregularly shaped region of low signal intensity on T2-weighted images caused by hemosiderin deposited around the bright methemoglobin signal.41 Edema is only present in the event of acute hemorrhage and subsides after a few days.41 These general findings may vary depending on the type of bleeding. Accordingly, Zabramski et al42 described 4 types of CM. Type I lesions have a hyperintense core on T1 spin echo (SE) sequences and a hyper or hypointense core on T2 SE. These cavernomas exhibit signs of subacute bleeding. The signal for type II lesions indicates a reticulated mixed core on T1 SE sequences, whereas T2 SE images reveal the same reticulated mixed core appearance together with a hypointense ring. These lesions have areas of bleeding and thrombosis of several years duration. Type III lesions are iso- or hypointense on T1 SE sequences and hypointense on T2 SE images, but they have a markedly hypointense ring that magnifies the lesion. In these cases there are signs of chronic bleeding with hemosiderin within and surrounding the lesion. Type IV lesions are small CMs visible only on T2*gradient echo (GE)
sequences. CMs are located most frequently in the pons (57%), followed by the midbrain (25%) and the medulla (18%).40 Multiple CMs are detected in 24% to 33% of sporadic forms and in 75% of familial forms.41,43

On the basis of postmortem studies, the prevalence of capillary telangiectasias is 0.4%,44 and they comprise 16% to 20% of all vascular malformations.45 They appear more frequently in adults, which suggests an acquired origin.32,46 In most cases, lesions are asymptomatic, and it is not yet clear whether there are any relevant associated clinical findings.35,47,48

These lesions are most frequently located in the pons.32,44,47 They tend to be single lesions,32,44 small in size, generally smaller than 2 cm.44 In most cases, they cannot be detected on T1-weighted sequences and may be iso- or mildly hyperintense on T2-weighted images and DP.44 Administration of contrast medium yields a uniform or “stippled” appearance.32,44 The margins of the enhancement zone are irregular, imparting what has been termed a “brush-like” appearance.32 The findings are thus nonspecific and similar to those for such diverse entities as MS, infarcts, CPM, and neoplasms.32,48 However, the characteristic finding for capillary telangiectasias is loss of signal intensity on T2*GE images (Fig. 4C).32,44 Magnetic susceptibility of deoxyhemoglobin in the ectatic vessels of this malformation has been postulated as the cause, because anatomopathological studies have revealed neither blood residues nor calcium.32,44 However, T2*GE scans are not sufficiently sensitive to demonstrate loss of signal intensity for some, mainly small, capillary telangiectasias. In these cases DWI has been shown to afford greater detection sensitivity.47

Other useful findings include the absence of mass effect and stability of lesions on follow-up imaging.32,44 This type of vascular malformation has recently been reported to exhibit signal hypointensity on susceptibility-weighted imaging.49

Mixed vascular malformations are frequently observed. The concurrence of cavernomas and DVA is especially common.50 Associations between capillary telangiectasias and DVA or CMs have also been described, and indeed an association among CM, DVA, and capillary telangiectasia has even been reported.50,51 The findings in these cases are a combination of the findings described for each of the associated vascular malformations. They may be situated some distance apart or very close together.

AVMs in the BS comprise 2% to 6% of all intracranial AVMs.52 They mostly tend to be symptomatic because of the high likelihood of hemorrhage, approximately 70% to 90% overall and 15.1% annually.52 Indeed, 80% to 90% of these AVMs present with intracranial hemorrhage.53 Although this entity may appear at any age, mean age at presentation is approximately 20 to 30 years of age, and AVMs are most frequently located in the midbrain, followed by the pons and the medulla.52,53

The appearance of AVMs in the BS in MR scans is similar to the appearance in the rest of the central nervous system and in most cases is readily recognizable. Imaging reveals abnormally dilated, overdeveloped vascular structures with “flow void” phenomena caused by signal loss produced by high flow rates. An increased signal can also be obtained because of turbulent flow in the vessels or vessel thrombosis. Signs of bleeding will be seen in the case of ruptured AVMs (Fig. 4D).

Multiple Sclerosis

The BS is frequently involved at the time of clinically isolated syndrome on presentation of MS,54 and it has been estimated that 35% of patients presenting with clinically isolated syndrome with BS involvement will develop clinically definite MS.55 Furthermore, lesions are commonly found in the BS in patients who have already received a diagnosis of MS. For instance, in a series of 114 cases published by Ormerod et al.,66 68% of patients with clinically definite MS had lesions in the BS.

Sequence selection is important in this context. For instance, conventional SE and fast spin echo T2-weighted image acquisition has been shown to be more sensitive than fast-FLAIR imaging for detecting posterior fossa lesions.57,58 Some authors have ascribed this behavior to lower T2 signal values for posterior fossa lesions compared with white matter lesions. These differences in the T2 signal values have been attributed to the structure of the closely packed fibers of the BS.54

MS lesions in the BS tend to be located primarily on the floor of the fourth ventricle and on the surface of the pons.54 Similar to lesions within the supratentorial compartment, they may exhibit gadolinium enhancement. These lesions are typically more diffuse and less hyperintense than their supratentorial counterparts.54 Furthermore, they are less likely to form “black holes” of pronounced signal hypointensity on T1-weighted sequences.59

As a rule, areas of demyelination in the BS tend to be small,59 but large abnormalities do occur that may be confused with tumors, chiefly gliomas.60,61 However, acute lesions of the BS do not usually develop cysts or an exophytic component.60

Demonstrating typical supratentorial MS lesions, specifically in the periventricular white matter and the callosal-septal sulcus (Fig. 5), are other findings that may be helpful in reaching a diagnosis. Also, the reader should be aware of another demyelinating disease, neuromyelitis optica (also known as Devic’s disease) that selectively affects the optic nerve and spinal cord while sparing the brain.62 In this case there may be BS involvement without supratentorial lesions.

Additionally, it may also be helpful to consider lesion development because the lesions may increase in size or conversely shrink until they virtually disappear. Disease stage and progression would then be indicated by the appearance of new lesions.

Age at onset of MS is an epidemiological factor to consider. MS is ordinarily diagnosed at ages of between 15 and 45 years,63 and hence a diagnosis of MS is not to be expected in children, who comprise fewer than 3% of cases.60 Oligoclonal bands in the CSF are more commonly seen in cases of MS with lesions in the BS.54 In the case of neuromyelitis
optica, the blood antibody NMO-IgG has a 90% specificity rate.62

Acute Disseminating Encephalomyelitis

Acute disseminating encephalomyelitis (ADEM) is a generally monophasic multifocal inflammatory disease of the central nervous system, in most cases preceded by infection or vaccination 1 to 3 weeks before clinical onset.64 BS involvement is characterized by single or multiple lesions variable in size which may enhance with intravenous contrast.65 The MRI abnormalities of ADEM are quite similar to those produced by MS, and these 2 diseases can be indistinguishable.66,67 Differential diagnosis between these 2 entities is determined on the basis of clinical, MR, and laboratory test results. From an epidemiologic standpoint, ADEM is usually diagnosed in children and young adults,66 whereas MS occurs in childhood only infrequently.68 Most cases present a systemic clinical picture of pseudoinfluenza starting 4 to 21 days after the triggering event which precedes the neurological symptoms.67 Unlike MS, classically ADEM is a monophasic disease, but even so remitting-recurring cases have been reported, and in such cases it is termed multiphasic disseminated encephalomyelitis.68 Clinical neurological features may be the same as for MS, although with certain particularities: clinical features similar to encephalopathy are more frequent in ADEM, affecting the level of consciousness and giving rise to epileptic seizures or meningismus.68 The presence of bilateral optic neuritis and complete transverse myelitis has also been described in children,67 which may differentiate this entity from encephalitis.69

In MR scans, involvement of the BS together with the cerebellum, basal ganglia, and thalamus is more frequent in ADEM than in MS.67,68 Although the abnormalities caused by ADEM have sometimes been described as being confined to the BS, more commonly there is concomitant involvement of other areas.65 Lesions ordinarily affect brain structures bilaterally but asymmetrically and are variable in size,68 with a tendency for lesions to be large and irregular in shape.70 Furthermore, in contrast to MS, demyelination zones ordinarily spare the corpus callosum and the periventricular white matter.67,68 Hemorrhage within the lesions is infrequent but, where it occurs, may suggest a diagnosis of ADEM.70,71

In the series reported by Atzori et al,68 with a mean follow-up of 6.8 years, more than 50% of the lesions remitted fully in children with ADEM, whereas in the rest the lesions underwent a pronounced reduction. By con-

Figure 5 MS. Axial TSE T2-weighted image (A) shows increased focal signal in the left mesencephalic red nucleus. Axial TSE-T2 (B) shows multiple hyperintense periventricular focal lesions on the anterior surface of the pons and in both middle cerebellar peduncles. Axial TSE T2-weighted image (C) reveals multiple hyperintense focal lesions perpendicular to the long axis of the lateral ventricles. Axial gadolinium-enhanced 3D FFE-T1-weighted image (D) shows nodular, complete and incomplete ringlike enhancement patterns.
trast, in patients with MS, new lesions accrue in 80% of cases.

Acute ADEM lesions may give rise to restriction on DWI, enabling the lesions to be differentiated from chronic lesions. A decrease in ADC values has also been related to a poor prognosis for patients with lesions in the BS. The pathophysiology underlying this behavior on diffusion-weighted sequences is unknown, but the cause has been postulated to be swelling of damaged oligodendrocytes or increased cellularity ensuing from inflammatory infiltrates, or it may even be a subtype of vasculitic disorder. By contrast, ADEM lesions are unlikely to be confused with acute ischemic lesions, which also exhibit restricted diffusion, in view of the differing clinical presentations and imaging findings.

CSF analysis may help differentiate ADEM from MS. Accordingly, whereas the detection of oligoclonal immunoglobulin G bands is nearly exclusively associated with MS, a lymphocyte level greater than 30 per μL is a finding that is closely associated with ADEM.

Abscess

Abscess of the BS is rare, comprising fewer than 4% of abscesses of the posterior fossa and fewer than 1% of all brain abscesses. In contrast to conventional wisdom, clinical findings are usually not suggestive of infection, ie, in most cases there is no fever, signs of meningismus, or leukocytosis. Consequently, patient symptoms generally result from affected BS nuclei and/or tracts. Because abscesses in the BS are most frequently located in the pons, cranial nerves VI and VII are most frequently involved.

The characteristic imaging finding is the presence of a lesion displaying contrast uptake in the form of a ring with surrounding vasogenic edema. On T2-weighted sequences the capsule is hypointense with a markedly hyperintense central portion, typically showing restricted diffusion. This diffusion behavior is probably the result of the high viscosity of coagulative necrosis, the hypercellularity of the pus, and the binding of water molecules on the surfaces of the bacterial walls. Low ADC values are far more typical of bacterial abscesses than those caused by tuberculosis, toxoplasmosis, or fungi.

For tuberculomas, visualization of a peripheral enhancing mass with a hypointense signal on T1 and T2-weighted images of the outer ring and hypointense content on T2-weighted images has been reported as characteristic. Spectroscopy can be helpful in diagnosing brain abscesses. This technique can be used to identify peaks of such abnormal metabolites as lactate, acetate, succinate, and various amino acids, for example, valine and leucine, which are not present in other focal lesions, for instance, tumors. Finally, identifying a primary focus of infection as the origin of a brain abscess can also be helpful, and the abscess will, by extension, be primary or metastatic. The main foci are the paranasal sinuses, middle ear, and teeth.

Hypertrophic Olivary Degeneration

Hypertrophic olivary degeneration (HOD) has been regarded as one form of transsynaptic degeneration in that it is associated with hypertrophy rather than atrophy of the inferior olivary nucleus (ION). The key diagnostic feature is the presence of a lesion at a distance from the ION, giving rise to a lesion in the dento-rubo-olivary pathway making up the anatomical triangle of Guillian and Mollaret. The red nucleus synapses with the ION via the central tegmental tract. The ION, in turn, is connected to the contralateral dentate nucleus and then to the contralateral red nucleus through the superior cerebellar peduncle. Hypertensive hemorrhage is most frequently responsible for HOD, but there is a long list of triggering factors, including tumors, demyelinating lesions, inflammation, cavernomas, and infarction.

Therefore, the site of the triggering lesion in the BS determines the ION that will undergo hypertrophic degeneration. Accordingly, if the primary lesion is restricted to the central tegmental tract, HOD will be ipsilateral, whereas if there is dentate nucleus or superior cerebellar peduncle involvement, HOD will be contralateral. Bilateral involvement is possible where the lesion affects both the superior cerebellar peduncle and the central tegmental tract.

MR examination allows the visualization of hypertrophy and manifested high signal in the ION on T2-weighted images, but the timeline for the appearance of these 2 findings is not the same. The increase in signal intensity on T2-weighted sequences begins 3 to 4 weeks after onset of the triggering lesion and subsists indefinitely thereafter. Olivary hypertrophy appears initially 6 months after the acute event and remits after 3 to 4 years. The absence of gadolinium enhancement may also aid in differential diagnosis.

Another imaging finding, but one that is less consistently present, is atrophy of the cerebellar cortex and dentate nucleus contralateral to the olive with HOD after degeneration ensuing from disruption of the olividendate fibers. A hyposignal on T2-weighted sequences of the contralateral dentate nucleus has also been described.

Symptomatic palatal tremor, consisting of myoclonus of the levator veli palatini muscle contralateral to the hypertrophic olive is a classic clinical finding in patients with HOD. Patients may also complain of a clicking sound in the ear. There may also be nystagmus or hypermetropic or torsional saccades (oculo palatal myoclonus). Synchronous contractions of the cervical muscles, diaphragm, tongue and limbs have also been reported.

Dilated Virchow–Robin Spaces

Virchow–Robin (VR) spaces surround the walls of the blood vessels entering the cerebral parenchyma from the subarach-
noid space. They can be seen in all age groups, although their frequency and size increase with advancing age. These lesions are generally asymptomatic, but because of their mass effect, on occasion they do give rise to clinical symptoms like Parkinsonism or motor weakness, although hydrocephalus is the most frequent clinical syndrome because of stenosis of the aqueduct of sylvius. MRI findings are characterized by a signal similar to CSF on all sequences, no gadolinium enhancement, and no restriction on diffusion imaging. The location of the dilated VR spaces is of great importance in making a differential diagnosis. There are 3 types on the basis of location. Type I VR spaces follow the lenticulostriate arteries entering the basal ganglia through the anterior perforated substance. Type II VR spaces occur along the paths of the perforating medullary arteries as they extend into the gray matter and the white matter in the convexity. Type III VR spaces are located in the BS and are the type of interest to us here. The most frequent location in the BS is the pontomesencephalic region, where VR spaces tend to be situated between the cerebral peduncle and the substantia nigra along the collicular artery and accessory collicular artery. In the upper BS (mesencephalo-diencephalic junction) they are located along the penetrating arteries behind the cerebral peduncle (posterior thalamoperforating or interpeduncular artery). VR spaces in the midbrain-thalamus may sometimes be greatly enlarged, taking on a complex, multicystic appearance that can be associated with a mass effect and alteration of the signal from the adjacent hyperintense parenchyma on T2-weighted imaging and FLAIR sequences by reactive gliosis (Fig. 7). Because of direct compression of the third ventricle or the aqueduct of Sylvius, these lesions cause hydrocephalus.

Conclusions

MRI is the modality most commonly used to evaluate focal lesions of the BS. Focal BS lesions are the result of a large variety of pathologic processes, including tumors, ischemia, infection, demyelinating diseases, degenerative disorders, and vascular malformations. In some cases a diagnosis may be reached solely on the basis of MRI findings for the BS lesion, but in many other cases the findings are nonspecific. In such cases other, associated abnormalities in brain structures other than the BS should be taken into account. Considering changes in the imaging findings over time or in response to a given treatment can be helpful. It is also essen-
ential to take account nonradiological aspects, such as patient age, disease incidence, clinical findings, and other test results, for instance, CSF analysis. As a consequence, in view of the differing prognoses and treatments for each of these different types of focal lesions affecting the BS, assessing MRI findings in the clinical and epidemiologic context of the patient is critical.

References

Figure 7 Enlarged VR spaces. Sagittal T1-weighted image (A) shows clusters of isointense variable-sized cysts with CSF in the midbrain. Axial FLAIR (B) shows a CSF-suppressed signal within the cysts. Coronal TSE T2-weighted imaged (C) demonstrates expansion and mass effect laterally in the third ventricle. ADC map (D) reveals increased water diffusion of the lesions.
33. Campeau NG, De Lane JI: Novo development of a lesion with the MR imaging appearance and clinicohistopathologic findings. Radiology 208:797-805, 1997