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As computed tomography (CT) technology has evolved, 
multidetector CT has become an integral part of the initial 
assessment of many injured patients, and the spine is 
easily included in the total body screening performed in 
patients with severe blunt polytrauma. Despite all the 
advantages of multidetector CT, clearing the spine in which 
injury is suspected continues to be a daily challenge in 
clinical practice. The purpose of this review is to present 
the evidence and the controversies surrounding the practice 
of imaging in patients suspected of having spine injury. 
The discussion is centered on the increasing reliance on 
multidetector CT in the work-up of these patients but 
also considers the important contributions of clinical trials 
to select patient for appropriate imaging on the basis of 
risk and probability of injury. Available protocols, injury 
classification systems, and issues awaiting future research 
are addressed.
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The imaging assessment of trauma 
patients has undergone dramatic 
changes over the past several years. 

Specifically, when spine injury is sus-
pected, there has been a shift from ra-
diography to multidetector computed 
tomography (CT), which provides faster 
and more accurate evaluation of the 
spine.

During the early 1990s, discussions 
regarding spine imaging concentrated 
on how many radiographic views were 
needed for optimal assessment of the 
cervical spine, and CT was used as a 
problem-solving tool for inadequately 
shown segments of the spine, typically 
the craniocervical and cervicothoracic 
junctions. The increasing availability of 
first-generation volumetric CT brought 
new ways for faster imaging of trauma 
patients. Protocols were developed that 
were based on scanning the entire cer-
vical spine, allowing for multiplanar dis-

play by using reformatted images from 
the axial data set. At first, reformations 
were of suboptimal quality and radi-
ography was still deemed necessary, 
particularly for adequate evaluation of 
vertebral alignment and of transversely 
oriented fractures. Over the past de-
cade, the development of multidetector 
CT has allowed faster volumetric acqui-
sition with thin collimation and rou-
tine isotropic and multiplanar display, 
which has obviated routine radiography 
when multidetector CT is available. In 
the trauma setting, multidetector CT is 
used concurrently to assess other body 
regions, and the spine can easily be in-
cluded as part of multisegment scan. 
Multidetector CT also allows generation 
of high-quality multiplanar two- and 
three-dimensional images for improved 
interpretation. Adequate thoracic and 
lumbar spine images can also be ob-
tained from the chest and abdominal 
CT data (1). Multidetector CT provides 
a faster and more comprehensive dis-
play of spinal anatomy than does radi-
ography, and, more important, it has 
shown a much higher sensitivity than 
radiography for fracture detection. In 
addition, multidetector CT introduces 
the opportunity for simultaneous assess-
ment of the cervical region for vascular 
injuries if intravenous contrast material 
is used.

Despite all these advantages of mul-
tidetector CT, clearing the cervical spine 
in patients suspected of having an in-
jury continues to be a daily challenge in 
clinical practice. Approximately 3 mil-
lion patients per year with spinal 
trauma are cared for in emergency de-
partments across the United Stated and 
Canada (2). Although the incidence of 
spine and cord injuries is low, cervical 
spine fractures may not be clinically ob-
vious, and missing an injury can result 
in devastating consequences. This de-
gree of uncertainty has introduced 
great variability in the imaging ap-
proach that allows one to adequately 
rule out cervical spine injury in trauma 
patients and has resulted in increas-
ingly liberal utilization of imaging re-
sources. It is estimated that $3.4 billion 
is spent in the United States to image the 
cervical spine (3). It is clear that even if 

multidetector CT is accepted as a valu-
able imaging resource, there should be 
no reason to perform multidetector CT 
in all trauma patients just because it is 
available, as this practice would result 
in inappropriate utilization with unjusti-
fiable levels of radiation exposure and 
health care cost.

In light of these comments, the pur-
pose of this review is to present the ev-
idence and the controversies surround-
ing the practice of imaging in patients 
suspected of having a spine injury. Our 
discussion will be centered on the in-
creasing reliance on multidetector CT 
in the work-up of these patients but will 
also consider the important contribu-
tions of clinical trials for selecting pa-
tients for appropriate imaging on the 
basis of risk and probability of injury. 
Available protocols, injury classification 
systems, and issues awaiting future re-
search will be addressed.

Clinical Clearance of the Cervical Spine

Cervical spine clearance after blunt 
trauma is defined as accurate confirma-
tion of the absence of a cervical spine 
injury. First, one needs to consider those 
clinical factors that can be used as pre-
dictors of spinal fracture risk to opti-
mize imaging strategies. Determining 
which blunt trauma patients need no 
imaging to rule out spine injury has 
been a subject of much interest over 
the years, particularly in view of the 
low yield of radiography in helping de-
tect cervical spine fracture and/or dis-
location, which is estimated between 
1% and 5% in most series (4). The ma-
jority of publications consisted of un-
controlled case series until the arrival 
of two prospective observational cohort 
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Essentials

 n Multidetector CT has become an 
integral part of the initial assess-
ment of many injured patients, 
and the spine is easily included in 
the total body screening per-
formed in patients with severe 
blunt polytrauma.

 n Application of the clinical predic-
tion rules such as NEXUS and 
the Canadian Cervical Spine rule 
should dramatically decrease the 
rate of unnecessary imaging to 
clear the cervical spine.

 n Despite all the evidence suggest-
ing that the number of unstable 
cervical spine injuries in 
obtunded trauma patients that 
are potentially missed at multide-
tector CT should be extremely 
low, the need for cervical spine 
MR imaging in this patient popu-
lation remains controversial.

 n In elderly patients, compared 
with patients younger than  
65 years, cervical spine fractures 
are more likely to be caused by 
low-energy mechanisms (eg, fall 
from standing height), and these 
injuries are more often missed.
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multicenter trials: the National Emer-
gency X-Radiography Utilization Study 
(NEXUS) (5) and the Canadian Cervi-
cal Spine rule (6). The two studies used 
different clinical criteria, but both pro-
vide robust evidence that has become 
widely accepted and used for identify-
ing trauma patients who need not un-
dergo spinal imaging.

The NEXUS decision tool comprises 
five simple criteria that make its appli-
cation straightforward and consistent 
among referring physicians. It deems 
patients at low risk of cervical spine 
injury when there is absence of poste-
rior midline cervical tenderness and 
of focal neurologic deficit when the pa-
tient is alert and not intoxicated or has 
a painful distracting injury. The CCS 
rule includes criteria for alert and sta-
ble trauma patients who are at risk for 
cervical injury and should undergo im-
aging. It identifies patients at low risk 
in whom it is safe to assess active range 
of motion of the cervical spine. It deems 
patients as cleared when they can turn 
their heads 45° in both directions. The 
CCS rule has been validated prospec-
tively, and it performed better than 
the NEXUS criteria with higher sensi-
tivity and specificity (7); however, the 
NEXUS criteria apply to all age groups, 
with good performance in the pediatric 
population, whereas the CCS rule ap-
plies only to patients aged 16–65 years. 
Debate continues about the advantages 
of one prediction rule over the other, 
but both sets of criteria have admittedly 
been shown to be powerful predictors 
of cervical spine injury, and their con-
sistent application should substantially 
decrease the rate of unnecessary imag-
ing to clear the cervical spine.

In 2007, Duane et al (8) prospec-
tively evaluated 534 blunt trauma pa-
tients, comparing the clinical examina-
tion findings with the results of CT of 
the cervical spine. The results were not 
consistent with the above recommen-
dations. Using history and physical ex-
amination findings, they failed to iden-
tify 12 of 52 patients with cervical spine 
fractures. Furthermore, in the subset 
of alert patients with a Glasgow Coma 
Scale score of 15 who had a nondis-
tracting injury or were intoxicated, 17 

had fractures, and seven of them had 
negative findings at clinical examina-
tion. These results require further in-
vestigation before we deviate from the 
currently accepted multicenter guide-
lines. In fact, the findings of Duane et al 
were not validated in a meta-analyses 
recently published by Anderson et al 
(4), whose goal was to identify those 
blunt trauma patients who can be safely 
cleared from cervical spine injury with-
out radiographic examination. Using 
studies with prospectively applied pro-
tocols and reported outcomes, these 
authors extracted the statistics and, by 
applying random-effects methods, con-
cluded that an alert asymptomatic pa-
tient without a distracting injury or 
neurologic deficit who is able to com-
plete a functional range of motion can 
be confidently cleared from the cervi-
cal collar without imaging. The authors 
calculated a sensitivity of 98.1% and a 
negative predictive value of 99.8% for 
protocols that safely cleared the cervi-
cal spine in this patient population. Of 
note, the occult injuries in their study 
analysis resulted from protocols in 
which a functional examination or the 
presence of distracting injury was not 
used as criteria.

Prior to the publication of the NEXUS 
and the Canadian Cervical Spine crite-
ria, Blackmore et al (9) had also inves-
tigated multiple clinical factors to de-
termine the probability of cervical spine 
fracture. Using odds ratios and compos-
ite predictors with a simplified stepwise 
logistic model, the authors developed a 
clinical prediction rule and concluded 
that the cause of injury, the patient’s age, 
and the presence of severe head injury  
or neurologic deficit were important 
predictors of cervical spine fracture.

Selection of Imaging Modality: 
Radiography and CT

Patients who do not meet the criteria 
proposed by the clinical prediction 
rules should undergo imaging. This 
applies to patients with pain, a neuro-
logic deficit, a distracting injury, al-
tered mental status, or obtundation or 
who fulfill a high probability of fracture 
according to mechanistic criteria.

In the past, a three-view radiographic 
screening examination with additional 
“swimmer’s” or oblique views, as well 
as limited CT of the poorly visualized 
segments of the spine, was common 
practice. The limitations of radiogra-
phy have been long recognized, particu-
larly in the subset of patients with the 
highest probability of fracture. Cervical 
radiography can be technically demand-
ing in these patients, who are typically 
on a trauma board, who may have con-
current severe injuries, and who may 
be uncooperative. Moreover, a substan-
tial number of studies have shown the 
superior performance of CT over radi-
ography. In 1994, Nunez et al (10) pub-
lished a report on a prospective series 
of 800 patients suspected of having 
multisystem injuries and reported a 
sensitivity of 98.5% for CT, as com-
pared with 43% for radiography, in this 
high-risk population. Furthermore, they 
initially proposed screening these pa-
tients with CT of the entire cervical 
spine at the time of the CT examinations 
of other body areas. The same authors 
noted that up to a third of fractures 
missed at radiography were either clin-
ically unimportant or unstable (11) and 
claimed a reduction in trauma work-up 
time when using CT, with improved pa-
tient disposition from the trauma bay 
(10,12). This concept was supported 
in additional publications by Daffner 
(13,14) that addressed the time effi-
ciency of CT base protocols.

Griffin et al (15) concluded that 
there was no role for screening with 
ra diography in a cohort of 1199 pa-
tients with altered mental status, pos-
terior neck tenderness, and neurologic 
deficit. In a prospective study of 1006 
patients with 72 injuries, Diaz et al (16) 
reported a 52.3% missed fracture rate 
for radiography, and a 17.5% miss rate 
was found for unstable cervical spine 
fractures. In that study, Diaz et al in-
cluded patients with either altered 
mental status or distracting injury. 
Authors of additional publications in 
the trauma literature, with smaller pa-
tient populations and different selec-
tion criteria (17–19), also concluded 
that there was a clear sensitivity of 
CT over radiography.
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Finally, in a meta-analysis, Holmes 
et al (20) compared radiography and 
CT and found that CT clearly outper-
forms radiography in injury detection, 
with a pooled sensitivity of 98% for CT 
and 52% for radiography in patients at 
high risk for injury, but concluded that 
there was insufficient evidence that CT 
should replace radiography in patients 
at low risk for cervical injury.

Cost-effectiveness and Risk 
Stratification

Based on the premise that patients at 
risk for spine fracture constitute a rather 
heterogeneous group, Blackmore et al 
(21) assessed the cost-effectiveness of 
imaging as a function of the probability 
of injury. They stratified patients into 
different levels of probability on the ba-
sis of clinical findings at the time of ad-
mission to the emergency depart-
ment. The cost-effectiveness analysis 
showed that in trauma patients at a risk 
higher than 10% for spine fracture, CT 
was the preferred imaging method in 
terms of both cost saving and paralysis 
prevention. CT was also considered a 
dominant strategy in patients with 
moderate probability of fracture (4%–
10%), but, in patients in the low-proba-
bility rank (,4%), CT was not cost-ef-
fective and radiography was a preferred 
strategy.

Conversely, a recent report by Bail-
itz et al (22) provided further evidence 
that CT should replace radiography in 
patients at high, moderate, or low risk 
for blunt cervical spine injury. A surpris-
ingly low sensitivity of 25% was encoun-
tered in this study for patients at low 
risk; in that study, however, risk stratifi-
cation was not performed at admission, 
which precluded an adequate estimation 
of the predictive values for radiography 
and CT. Furthermore in that study, the 
low-risk patients were underrepresented 
in the total patient population.

In a publication by Daffner and 
Hackney (23), the prediction rules that 
endorse radiography for low-risk patients 
were considered obsolete, given the ap-
parent underestimation of the perfor-
mance of CT systems based on older 
technology and thick-section imaging. 

The current American College of Radi-
ology appropriateness criteria state that 
the use of radiography in patients sus-
pected of having a cervical spine in-
jury should rather be reserved for adult 
patients when multidetector CT is not 
readily available, indicating that radiog-
raphy should not be considered a sub-
stitute for CT.

Radiation and Overutilization

Despite these recommendations by the 
American College of Radiology and all 
the evidence supporting the superior-
ity of CT, the associated radiation expo-
sure and the increasing cost of health 
care still suggest the need for further 
optimization of the indications for CT 
in those patients at low risk of cervical 
spine injury, in whom prediction crite-
ria deemed imaging necessary. Radia-
tion from CT is usually considered a 
nonhomogeneous dose distribution, and 
organ dose is the preferred metric for 
radiation risk estimation. There is di-
rect epidemiologic evidence that the 
organ dose delivered during a common 
CT study of two or three body parts 
(30–90 mSv) results in increased risk of 
cancer (24). Rybicki et al (25) quantified 
the increasing thyroid radiation when 
CT of the entire cervical spine was per-
formed with single-detector helical CT 
and found a 14-fold increase over the 
radiographic trauma series (26 mGy for 
CT vs 1.8 mGy for radiography). Chan 
et al (26) found the estimated absorbed 
dose by the thyroid to be 75.6 mGy 
when a 16–detector row scanner is 
used with no dose modulation.

Overall, radiation exposure from CT 
can be reduced by using automated ex-
posure-control options based on the 
patient’s size. Prioritizing the different 
dose-reduction strategies is a challenge 
for the radiologist, and different dose-
reduction solutions have been developed 
by CT manufacturers. Mulkens et al (27) 
showed that the use of tube current 
modulation with low tube voltage set-
tings can substantially reduce radiation 
dose, as compared with standard fixed 
voltage settings, while preserving ade-
quate image quality. The other options 
to minimize the radiation dose are to 

decrease the number of CT studies that 
are ordered or to replace CT with alter-
natives that involve lower radiation ex-
posure. To this end, the more rigorous, 
consistent, and widespread application 
of the NEXUS criteria coupled with the 
use of radiography in patients at low 
risk for injury may help reduce a sub-
stantial number of negative CT exami-
nations in this patient population.

Recent work (28) in which the or-
dering patterns of emergency depart-
ment physicians were analyzed and the 
use of the NEXUS criteria was assessed 
could further decrease the utilization of 
CT imaging determined that if clini-
cians strictly adhere to the NEXUS pre-
diction rules, more than 20% of the 
patients in their series would have been 
spared an unnecessary examination. In 
a recent publication, Larson et al (29) 
further support the need for evidence-
based decision models that can estab-
lish the probability of patient benefit 
from CT at the time of decision making 
in the emergency department. Identify-
ing national trends, they found that the 
use of CT in emergency departments in 
the United States has increased expo-
nentially during their study period 
(1995–2007) and that CT-associated ra-
diation exposure in the emergency de-
partment setting has likely increased 
even more rapidly than the number of 
CT examinations performed.

The Obtunded Patient

Unrecognized cervical spine injuries in 
obtunded trauma patients have the 
potential for neurologic deterioration, 
paralysis, or even death (30,31). Un-
necessary prolonged spinal immobiliza-
tion limits central venous access and 
may cause various complications, in-
cluding respiratory deterioration, pres-
sure ulceration, and venous thrombosis 
(32–34). Furthermore, prolonged im-
mobilization is associated with increased 
health care cost (31,35).

Several studies (34,36–38) have pro-
vided evidence suggesting that the num-
ber of unstable cervical spine injuries in 
obtunded patients with negative multi-
detector CT examination results is ex-
ceedingly low. In a retrospective study 
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Figure 1: Sagittal midline CT reformatted image 
in an 85-year-old man who presented with central 
cord injury after a fall from standing demonstrates a 
hyperextension injury with anterior widening of the 
C4-5 disk space (solid arrow) and prevertebral soft-
tissue swelling (open arrow). Note also multilevel 
cervical spondylosis and canal stenosis. Subaxial 
Cervical Spine Injury Classification (SLIC) score was 
8 (surgical: injury morphology, 3 points; disruption of 
discoligamentous complex, 2 points; incomplete 
cord injury, 3 points).

Figure 1 of 366 obtunded blunt trauma patients 
who had undergone cervical spine mag-
netic resonance (MR) imaging after neg-
ative findings from multidetector CT, 
Hogan et al (37) reported negative pre-
dictive values of 98.9% (362 of 366 pa-
tients) for ligament injury and 100% for 
unstable cervical spine. Harris et al (31) 
found that in only one of 367 patients 
examined did initial CT fail to help iden-
tify an injury, for a false-negative rate 
of 0.3%. That patient was effectively 
treated nonsurgically. In a prospective 
study by Como et al (34), 115 obtunded 
blunt trauma patients with negative mul-
tidetector CT results underwent cervical 
spine MR imaging for clearance. Among 
this study group, six patients (5.2%) had 
acute injuries, none of which required 
any change in management or interven-
tion. In a prospective study of 402 pa-
tients by Hennessy et al (36), one injury 
was missed at CT but was identified at 
retrospective review of the images, for 
a sensitivity of 99.75%.

Conversely, Menaker et al (39), in a 
retrospective study of 203 patients who 
were evaluated with MR imaging with 
unreliable clinical examination findings 
and negative multidetector CT findings, 
suggested that negative results from cer-
vical spine CT are not sufficient for cervi-
cal spine clearance in this patient popu-
lation. Eighteen patients had abnormal 
findings on MR images, two of whom re-
quired surgical repair and 14 of whom 
required extended collar immobilization.

Despite all the evidence suggesting 
that the number of unstable cervical 
spine injuries in obtunded trauma pa-
tients potentially missed when multide-
tector CT is used should be extremely 
low; the need for cervical spine MR im-
aging in this patient population remains 
controversial.

Role of MR Imaging

Under certain clinical conditions, MR 
imaging can add vital information and 
influence clinical and surgical care. Spe-
cifically when there is clinical evidence 
of progressive neurologic deficits, MR im-
aging is indicated regardless of the mul-
tidetector CT findings. An incomplete 
neurologic deficit could also be an indi-

cation to perform MR imaging. Patients 
with severe pain may also require fur-
ther evaluation with MR. MR imaging 
can, for example, help determine the 
presence of a traumatic disk herniation 
or an expanding extramedullary hema-
toma, both of which may escape detec-
tion on CT images. In both circum-
stances, compression of adjacent neural 
structures (spinal cord or cervical nerve 
roots) may indicate the need for urgent 
surgical decompression, which may re-
verse or halt the progressive neuro-
logic deficit(s). The issue of when to 
use MR imaging for traumatic spine in-
jury is complicated by the potential 
medical, social, economic, and medicole-
gal consequences of missed injuries and 
should be elucidated in future larger 
prospective multi-institutional studies. 
Whether such a study becomes a real-
ity due to funding and administrative 
issues is problematic, so at present the 
finding of an indication of worsening 
clinical neurologic status may suggest 
the need to obtain an urgent MR study.

Imaging Elderly Patients Suspected of 
Having Spinal Trauma

Injury patterns in elderly patients differ 
from those in younger patients because 
of a combination of altered biomechan-
ics resulting from degenerative changes 
and osteopenia (40). In elderly pa-
tients, as compared with patients youn-
ger than 65 years, cervical spine 
fractures are more likely to be caused 
by low-energy mechanisms such as a 
fall from standing height, and these in-
juries are more often missed (Fig 1). 
In addition, the predominance of de-
generative changes in the lower cervical 
spine makes the upper cervical spine 
the more mobile portion, thus explain-
ing the higher proportion of injuries in 
this segment in the elderly population 
(41–45).

In 2005, Bub et al (46) developed  
a clinical prediction rule to determine 
the risk of cervical spine fracture in 
blunt trauma patients aged 65 years or 
older. Their results were similar to 
those from a previously reported pre-
diction rule developed for the general 
adult population. The most important 

predictors of injury were neurologic 
deficit, head injury, and high-energy 
mechanism of injury. However, the au-
thors acknowledged that the probabil-
ity of cervical spine fracture in the el-
derly is more difficult to predict than 
that in other adults, because fractures 
caused by low-energy mechanisms oc-
cur more commonly (9,46).

Protocol for 64-Detector CT

Dedicated Cervical Spine Multidetector CT
Dedicated cervical spine multidetector 
CT is the technique used at our institu-
tion to evaluate blunt trauma patients 
suspected of having cervical spine in-
jury who do not have an indication for 
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contrast material–enhanced chest and/or 
abdominopelvic CT. This technique in-
volves scanning the entire cervical spine 
without intravenous administration of 
contrast material by using automatic ex-
posure control on a 64- or 128-detector 
CT scanner with 0.6-mm configuration. 
We use 2-mm axial section thickness 
with a 1-mm reconstruction interval, 
with routine 1.5-mm-thick coronal and 
sagittal reformations. The isotropic data 
set obtained with current-generation 
multidetector CT scanners allows the 
routine generation of multiplanar ref-
ormations and three-dimensional re-
constructions that provide useful infor-
mation for selection of the appropriate 
treatment and surgical planning. Opti-
mal visualization may assist in treatment 
decision making by helping in the iden-
tification of cervical injuries in need of 
surgical stabilization (38,47). Three-
dimensional reconstructions are gener-
ated by the interpreting radiologist at 
the picture archiving and communica-
tion system workstation by using incor-
porated (thin client) software (Table 1).

Whole-Body Multidetector CT in Severe 
Blunt Polytrauma
Whole-body multidetector CT is rou-
tinely used in patients with blunt poly-

trauma. This encompasses the cervical 
spine and contrast-enhanced body CT. 
The presence of intraarterial contrast 
material while scanning the neck allows 
simultaneous evaluation of the cervical 
spine and the carotid and vertebral 
arteries. An initial unenhanced exami-
nation of the head is obtained, followed 
by a single continuous acquisition from 
the circle of Willis to the symphysis 
pubis (48–50) (Table 1). The patient 
receives an intravenous injection of 
100 mL of contrast agent (ioversol, Op-
tiray [350 mg of iodine per millimeter]; 
Mallinckrodt Imaging, Hazelwood, Mo) 
at a rate of 4 mL/sec for 15 seconds, 
then at a rate of 3 mL/sec. This is fol-
lowed immediately by a 40-mL 0.9% 
saline bolus at 4 mL/sec through an 
18- or 20-gauge catheter located in an 
antecubital vein. We use an automated 
triggering device, with the region of in-
terest placed in the ascending aorta.

Biomechanics and Stability: 
Mechanisms of Injury

Currently, the commonly accepted clas-
sification system for predicting stability 
of the spine is the one described by 
Denis (51) in 1983—namely, the three-
column system. Denis divided the spine 

into three columns: the anterior col-
umn, the middle column, and the pos-
terior column. The anterior column 
comprises the anterior longitudinal lig-
ament, the anterior two-thirds of both 
the vertebral body and the disk, and 
the anterior annulus fibrosus. The mid-
dle column is composed of the poste-
rior one-third of the vertebral body and 
the posterior one-third of the disk, as 
well as the posterior longitudinal liga-
ment (PLL). The posterior column is 
composed of the posterior vertebral el-
ements: the ligamentum flavum, inter-
spinous ligaments, and supraspinous 
ligaments. Stability of the spine can be 
predicted by the failure of two contigu-
ous columns (51–55).

Stability of the spine may be defined 
as the ability to maintain normal align-
ment under normal loading and stress 
conditions. In evaluating stability of the 
cervical spine, four basic guidelines need 
to be assessed: namely, the anterior 
vertebral alignment, the posterior ver-
tebral alignment, the spinolaminar line, 
and the spinous process line. In addi-
tion, there should be normal spacing of 
the facet joints, interspinous distances, 
and disk spaces. The facets should be 
parallel to each other, and the facet 
joint intervals should be relatively uni-

Table 1

Multidetector CT Protocols

Parameter Dedicated Cervical Spine Whole Body

Collimation (mm)* 0.6 0.6
Rotation time (sec) 0.5 0.5
Anatomic coverage Above foramen magnum to T2 Above frontal sinus to symphysis pubis
Voltage (kV) 120 120
Current Automatic modulation Automatic modulation
Pitch 0.7 0.7
Imaging and reconstruction planes† Axial (2.0); coronal and sagittal (1.5); three-dimensional Axial (2.0 for neck to 3.0 for whole body), coronal and sagittal  

 (1.5 for neck to 2.0 for whole body), three-dimensional
Contrast agent
 Iodine concentration (mg/dL) None 350
 Injection rate Not applicable 4 mL/sec for 15 sec, then 3 mL/sec
 First bolus volume (mL) Not applicable 100
 Second (saline) bolus volume (mL) Not applicable 40
 Timing technique Not applicable Bolus tracking
 Region of interest Not applicable Ascending aorta

* Used for both 64- and 128-section scanning.
† Coronal, sagittal, and three-dimensional are reconstructions. Numbers in parentheses are section thickness in millimeters.
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vere disruption of the vertebral bodies 
with fracture dislocations of the poste-
rior elements, including the transverse 
processes and ribs (54,55,60). These 
associated injuries can help distinguish 
this type of injury from burst fractures 
because, as the name implies, there are 
rotational and hyperflexion forces. 
Daffner and colleagues (53,54) have 
also described that the fracture frag-
ments are oriented in a circular array, 
thus demonstrating the rotational vec-
tor of the force.

Occipital condylar fractures are fre-
quently missed on standard radiographs. 
With the advent of multidetector CT, 
these fractures appear to be more com-
mon than previously thought. Three 
types have been described (57,61,62). 
Type 1 condylar fractures are the result 
of compression injuries of the occipi-
tal condyle. These demonstrate non-
displaced fractures of the condyle and 
are considered stable (Fig 5). Type 2 
fractures of the occipital condyles are 
actually extensions of an occipital skull 
fracture; they may extend unilaterally 
or bilaterally into the basion and are 
also considered stable (Fig 6). Type 3 
fractures, however, have a displaced 
bone fragment from the occipital con-
dyle into the spinal canal due to avul-

Figure 2: Oblique sagittal volume-rendered CT images in a 29-year-old man involved in a motor vehicle 
collision. (a) Mild widening of the right C2-3 facet joint (circle) is shown. Compare with (b) the normal left 
facet joint (circle).

Figure 2 form (Fig 2). Disk spaces should also 
be symmetric, and there should not be 
widening or narrowing anteriorly or 
posteriorly (Fig 1). The interspinous or 
interlaminar distances should also dem-
onstrate little variation. Vertebral body 
heights and their anteroposterior length, 
along with all osseous and soft tissues, 
should be assessed. By evaluating all 
these structures, the presence or ab-
sence of stability and the mechanism of 
injury may be determined. Each injury 
mechanism manifests a recognizable ra-
diologic pattern, or what Daffner and 
colleagues (53,54) termed their radio-
logic “footprints.”

Injuries to the spine are caused by  
a variety of recognizable mechanisms. 
The four major patterns of injury are 
flexion, extension, rotational, and shear-
ing. Each major mechanism may fre-
quently be associated with other forces, 
making the injury pattern more com-
plex. These include hyperflexion with 
rotation, hyperflexion with axial load-
ing, hyperextension with rotation, dis-
traction, lateral flexion, and rotation 
with flexion. These are all variations of 
the four major groups based on the vec-
tors of the forces applied. A combina-
tion of mechanisms may also be recog-
nizable, but a dominant force is usually 
apparent. Combinations of more than 
one spine injury are also reported in 
10%–20% of cases, so careful inspec-
tion for other spine fractures is impor-
tant (53–55).

A shearing injury is the result either 
of a force applied in one direction while 
another force acts in an opposite direc-
tion or of a force applied at one level 
while the torso above or below the ap-
plied energy remains fixed. In the spine, 
these injuries most commonly occur at 
the craniocervical junction and near the 
thoracolumbar junction. Craniocervical 
dissociation injuries result from direct 
trauma to the skull, such as when the 
skull strikes the dashboard of a car 
while the body is moving in a forward 
direction, thus creating a shearing force 
at the craniocervical junction. There 
are three recognized types of craniocer-
vical dissociation. All craniocervical dis-
sociation injuries involve a distractive 
force to some degree. In type 1 injuries, 

the initial force is directed in a posteri-
or-to-anterior direction, resulting in lig-
amentous disruption with anterior 
translation and distraction of the skull 
base in relation to C1. The type 1 injury 
is the most common; it is seen in ap-
proximately 65% of cases (56–59) (Fig 
3). The type 2 injury results from a dis-
tractive force to the skull that results in 
cephalad separation of the craniocervi-
cal junction (Fig 4). The type 3 injury is 
uncommon; it is seen in 3% of cases 
and is considered the most serious type 
of injury. Type 3 injuries result from 
force applied in the anterior to poste-
rior direction, causing posterior trans-
lation and distraction at the craniocer-
vical junction. Although type 3 injuries 
may be devastating, there is increasing 
evidence that some of these injuries are 
survivable (59,60). Chang et al (58) de-
scribed multidetector CT measure-
ments that are helpful in establishing 
the diagnosis of craniocervical distrac-
tion injury (Fig 3).

Rotational injuries may occur near 
the skull base and near the thoracolum-
bar junction. Injuries at C1-2 may cause 
rotatory fixation or rotatory disloca-
tion, where the lateral masses of C1 are 
locked over C2. At the thoracolumbar 
junction, rotational injuries cause se-
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Figure 4: Coronal CT reformatted image in a 
25-year-old man involved in a motor vehicle collision 
demonstrates an extreme example of atlanto- 
occipital dissociation with cephalad separation of 
the craniocervical junction (type 2 injury) (*).

Figure 4 

sion at the attachment of the alar lig-
ament (Fig 7). Type 3 fractures are 
considered to be unstable fractures (60).

Fractures of the atlas (C1) may re-
sult from hyperextension injuries, as 
well as from pure axial loading injuries. 
Axial loading of the skull base on the 
axis can result from diving injuries or 
injuries resulting in direct loading of the 

Figure 5: Coronal CT reformatted image in a 
48-year-old woman with nondisplaced type 1 
fracture of right occipital condyle (arrow) resulting 
from a motor vehicle collision.

Figure 5 

Figure 3: (a) Sagittal midline CT multiplanar reformatted image in a 35-year-
old man who had been in a motor vehicle accident shows type 1 atlanto- 
occipital dissociation with a widened basion-dens Interval (arrow) and basion–
posterior axial line interval (dashed lines–both intervals greater than  
12 mm). Note the V sign, indicating the abnormal divergent nature of alignment 
of the anterior arch of C1 with the dens (black open arrow). The white open 
arrow shows an increased midline C1-2 spinolaminar distance (. 8 mm).  
Patient underwent occipitocervical fusion with interval reduction in the atlanto-
occipital subluxation (not shown). (b) Sagittal CT reformatted image in a  
28-year-old man with a type 1 craniocervical distraction injury resulting  
from a motorcycle crash demonstrates anterior condylar displacement (circle). 
(c) Sagittal CT multiplanar reformatted image obtained after occipitocervical 
fusion shows reestablishment of normal craniocervical relationships.

Figure 3 
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skull on the cervical spine. This can re-
sult in fractures of the anterior arch 
of C1 at one or two locations, as well 
fractures of the posterior arch (Fig 8). 
Hyperextension injuries may result in 
compressive forces on the posterior 
arch that cause bilateral fractures of  
the posterior ring of C1. Avulsion frac-
tures of the anterior arch can also oc-
cur with hyperextension at the attach-

Figure 6: (a, b) Coronal multiplanar CT images in a 52-year-old male pedestrian who was hit by a car 
show type 2 fracture of an occipital bone (arrow) extending into the left occipital condyle.

Figure 6 

Figure 7: (a) Multiplanar coronal CT reformatted image in a 27-year-old man involved in a motor vehicle 
collision shows a type 3 fracture with medial displacement of left occipital condyle (solid arrow). Nondis-
placed fracture of left lateral mass of C2 (open arrow) is also shown. (b) Coronal CT reformatted image in a 
46 year-old man involved in a motor vehicle collision shows type 3 fracture with severe displacement of left 
occipital condyle.

Figure 7 

Figure 8: Jefferson fracture resulting from a 
diving accident in a 36-year-old man. (a) Axial  
CT image shows bilateral fractures of the anterior 
arch (solid arrows) and nondisplaced fracture of  
the lateral mass of C2 (open arrow). Patient also  
had bilateral posterior arch fractures (not shown). 
(b) Multiplanar coronal CT reformatted image shows 
lateral displacement of lateral masses of C1 relative 
to lateral margins of the axis (arrows).

Figure 8 

ments of the longus colli muscles or  
at the ligamentous attachments to the 
skull base.

The mechanism of injury of odon-
toid fractures is probably complex with 
multiple forces acting together. The 
Anderson-D’Alonzo classification sys-
tem is the one most commonly used to 
describe dens fractures (55,60). A type I 
fracture is an avulsion of the tip. A type II 

fracture, the most common, is a trans-
verse fracture through the base of the 
dens. A type III fracture extends into 
the body of C2 (Fig 9).

Hyperflexion injuries are the most 
common injuries to the spine; they are 
seen in 50%–60% of cases. In the tho-
racolumbar spine, these injuries are 
usually centered at the thoracolumbar 
junction, where the normal thoracic ky-
phosis is continuous with the lumbar 
lordosis. Injuries from hyperflexion 
mechanisms include hyperflexion 
sprains, a purely ligamentous injury, bi-
lateral facet dislocations, anterior 
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Figure 9: Dens fractures. (a) Rare type 1 odontoid fracture in a 20-year-old man involved in a motor vehicle collision. Coronal multiplanar CT reformatted image 
shows fracture (arrow) of tip of the dens secondary to avulsion of alar ligament. (b) Type 2 odontoid fracture in a 72-year-old woman after a fall. Coronal CT reformat-
ted image shows fracture at base of odontoid above the plane of C2 lateral masses (arrow). (c) Type 3 odontoid fracture in a 26-year-old man involved in a diving 
accident. Coronal CT reformatted image fracture extending into body of C2 (arrow).

Figure 9 

Figure 10: Flexion teardrop fracture of C5 vertebral body in a 17-year-old girl involved in a motor vehicle 
collision. (a) Sagittal CT reformatted image shows anteriorly displaced fragment (open arrow) and retropul-
sion of C5 vertebral body (arrowhead). (b) Coronal CT reformatted image shows sagittal fractures through  
C4 and C5 vertebral bodies (arrows).

Figure 10 

wedge compressions of the vertebral 
body, clay shovelers fractures, flexion 
teardrop fractures, and Chance-type 
fractures. The addition of a rotational 
component and posterior distraction 
with hyperflexion injuries can result in 
unilateral facet dislocations. Axial load-
ing and accompanying hyperflexion will 
lead to burst fractures. Forces acting 
along the coronal plane—that is, a lat-

eral flexion injury—give rise to occipital 
condylar fractures and odontoid frac-
tures, as well as lateral compression of 
the vertebral bodies (53–55,60,63,64) 
(Fig 7).

In general, hyperflexion injuries cause 
narrowing of the anterior disk space 
with distraction of the posterior liga-
ment complex and the posterior disk 
space. Anterior translation of the verte-

bral body and posterior elements may 
also be present, distinguishing this in-
jury from anterior subluxations caused 
by hyperextension injuries wherein the 
spinolaminar line is not usually dis-
placed. The radiologic findings of hy-
perflexion injuries include widening of 
the interlaminar and interfacet spaces 
and compression fractures of anterior 
vertebral bodies, resulting in displaced 
fractures of the anterior inferior body 
(teardrop fracture) (Fig 10) and, if ac-
companied with axial loading such as 
that seen with direct force on the ver-
tex of the head, can result in burst 
fractures of the vertebral body (Fig 11). 
Hyperflexion injuries disrupt the poste-
rior ligament complex and cause widen-
ing of the interspinous, interlaminar 
spaces, as well as widening of the facet 
joints and disruption of the posterior 
column and middle columns (Fig 12). 
Bilateral facet dislocation is seen with 
severe hyperflexion and can result in se-
vere neurologic injury (54,55,60,64).

Hyperextension injuries are more 
common in the cervical spine than in the 
thoracolumbar spine (Fig 1). They tend 
to widen the anterior disk space and may 
be associated with fracture dislocations 
of the facet joints and pedicles. Vertebral 
bodies can be dislocated posteriorly or 
anteriorly; however, anterior subluxa-
tions of the vertebral bodies result when 
there is failure of the mid dle column and 
posterior vertebral elements, the laminae 
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and pillars. Traumatic spondylolisthesis 
of C2, known as hanged man’s fracture is 
a group of injuries with variable mecha-
nisms (Fig 13). Hanged man’s fractures 
cause distraction anteriorly with fractures 
through the posterior arch or posterior 
vertebral body (atypical hanged man’s 
fracture) or a combination of the two. 
Most of these fractures are due to hyper-
extension forces and are usually stable. 
Anterior or posterior subluxations may 
be seen with this type of fracture. When 
anterior subluxations occur with hyper-
extension injuries, the interlaminar line 
remains intact, as does the interspinous 
distance, distinguishing this injury from a 
hyperflexion injury wherein the posterior 
ligamentous structure and middle column 
are distracted.

The Subaxial Cervical Spine and 
Thoracolumbar Injury Classification

The majority of the classification sys-
tems currently in use in clinical prac-

tice are primarily descriptive and are 
based on presumed injury mechanisms 
(65,66). Several years ago, a new clas-
sification system was proposed by Vac-
caro et al (67,68), who based the 
system on three injury characteristics 
for the thoracolumbar and, later, the 
subaxial cervical spine—the Thoraco-
lumbar Injury Classification and Sever-
ity score (67) and the Subaxial Cervi-
cal Spine Injury Classification system 
(68). This new classification system 
puts greater focus on the posterior lig-
amentous complex and its integrity 
rather than on the middle column and 
takes into account the morphology of 
the injury and the clinical neurologic 
status of the patient, with each cate-
gory being assigned points related to 
the severity of the findings (68–71). 
When combined, the clinical and ra-
diologic findings generate a numeric 
score that can help predict the need 
for surgical intervention (Tables 2, 3). 
The authors reported the need for cer-
vical spine surgical intervention in 
76% of patients with a score of 7 (Fig 
1). A thoracolumbar injury with a 
score higher than 4 would require in-
tervention, that with a score less than 

Figure 11: Burst-type fracture in a 65-year-old 
man after a fall from 15 feet (4.5 m). Sagittal CT 
reformatted image shows C7 fracture with retropul-
sion into spinal canal. Also note small fracture at 
anterosuperior aspect of T1 (arrow).

Figure 11 

Figure 12: Hyperflexion injury 
in a 17-year-old boy involved in a 
motorcycle crash. (a) Sagittal 
oblique CT curved reformatted 
image and (b) volume-rendered 
CT image show severe focal 
narrowing of right vertebral artery 
(arrow), indicating dissection 
(grade 2 injury) and bilateral 
C4-5 facet fracture-subluxation 
(arrowhead) (only the right side  
is shown).

Figure 12 

4 could be treated conservatively, and 
that with a score of 4 could be man-
aged either way. This scoring system 
has been shown to be reliable and re-
producible for all levels of experience 
(71). The injury morphology patterns 
assessed on imaging studies include 
compression, burst, distraction, and 
rotation and translation. The anatomic 
components of discoligamentous 
complex comprise the intervertebral 
disk and the anterior and posterior lig-
amentous structures. The neurologic 
status of the patient is the third com-
ponent evaluated in this classification 
system; it includes nerve root injury 
and complete and partial spinal cord 
injury.

Multidetector CT Findings of 
Associated Blunt Cerebrovascular 
Injuries

Blunt carotid and vertebral arterial in-
juries, collectively known as blunt ce-
rebrovascular injuries (BCVIs), are the re-
sult of nonpenetrating trauma to the 
neck. Motor vehicle accidents are the 
most common mechanism of injury, 
causing up to 80% of BCVIs. Other less 
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frequent causes include falls, diving 
injuries, chiropractic manipulation, as-
sault, and hanging (72–74). Symptom-
atic patients who present with focal 
neurologic deficit unexplained by neu-
roimaging findings may have a reported 
morbidity of up to 80% and associ-
ated mortality of up to 59% (75,76)). 
These injuries, however, are often ini-
tially asymptomatic for up to 72 hours 
(72,77). This has led to the implemen-
tation of aggressive screening programs 
to enable early detection and treatment 
of these injuries, before the development 
of a neurologic deficit (75). The need to 
identify a BCVI while the patient re-
mains asymptomatic has been strength-
ened by the results of studies that have 
shown a significant improvement in 
neurologic outcome with early treat-
ment with anticoagulation or antiplate-
let agents (74–76). Moreover, screen-
ing and treatment of BCVI has been 
shown to be cost effective (77). Al-
though previously thought to be ex-
tremely rare, the incidence of these 
injuries after the implementation of this 
liberal approach to screening is around 
1% of patients with blunt trauma (76). 
Screening criteria for BCVI include skull 
base fractures (particularly those ex-
tending into the carotid canal), cervical 
spine fractures involving C1-3, foramen 
transversarium, and cervical subluxa-
tion or dislocations, LeFort II or III fa-
cial fractures, Glasgow Coma Scale score 
of less than 6, and/or severe chest in-
juries (77–84).

Vertebral artery injuries associated 
with cervical spine fractures are most 
likely to occur in the foraminal (V2) seg-
ment, where the artery is immediately 
adjacent to osseous structures. Because 
of its location within the foramen trans-
versarium, the vertebral artery is at 
risk for injury in cervical spine trauma. 
Vertebral artery injuries can occur as  
a result of direct trauma from bone 
fragments or from excessive stretch in 
fractures and dislocations (85). Vertebral 
artery injury is seen more frequently 
with multilevel foramina fractures and 
in patients with foramen transversari-
um fracture comminution (86). The re-
ported incidence of vertebral artery in-
jury in patients who sustain cervical 

Figure 13 

Figure 13: Hanged man’s fracture in a  
50-year-old man involved in a motor vehicle 
collision. (a) Parasagittal CT image of cervical 
spine shows bilateral fractures (arrow) through 
the pars interarticularis (only left side shown). 
(b) Midsagittal CT reformatted image shows 
slight anterior displacement and widening of 
posterior C2-3 disk space. Note anterior angu-
lation related to combined flexion and exten-
sion forces, indicating unstable injury (solid 
arrow), and prevertebral soft-tissue edema 
(open arrow). (c) Volume-rendered CT sagittal 
image shows associated occlusion of left verte-
bral artery (open arrows; grade 4 injury) and 
fracture of the pars interarticularis (solid 
arrow).

spine trauma is between 17% and 46% 
(86–88). Approximately 70% of these 
injuries are associated with a cervical 
spine fracture (86,89,90).

The outcome in patients with ver-
tebral artery injury is variable, ranging 
from no neurologic deficits to posterior 
circulation stroke and death. Neurologic 
deficits may be caused by several mech-
anisms, including vertebrobasilar insuf-
ficiency when both vertebral arteries 
are severely narrowed or occluded or 
when the dominant vertebral artery is 
injured. Thrombus formation at the in-
jury site, with resultant distal emboli-
zation, may also cause neurologic se-
quelae. Emboli are more common in 

nonocclusive injuries such as dissection 
or pseudoaneurysm (86,91–94).

In the evaluation of BCVIs, conven-
tional angiography has been the refer-
ence standard imaging modality, but it 
has limitations, including its invasive 
nature, cost, logistic constraints, and po-
tential complications (94). Multidetec-
tor CT angiography is increasingly be-
ing used as screening modality in the 
evaluation of cerebrovascular injuries be-
cause of its widespread availability. CT 
angiography can easily be performed in 
the same setting as CT for other trau-
matic injuries and is emerging as an ac-
curate, rapid, noninvasive diagnostic al-
ternative in the initial evaluation of 
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patients who present to the emergency 
department with possible BCVIs 
(38,50,72–76,78,81,95–101). For these 
reasons, multidetector CT has been 
adopted as the screening modality of 
choice at many trauma centers (38, 
50,51,73–75,81,83,98,100).

Owing to the presence of some con-
flicting results, results from the avail-
able studies do not definitively answer 
the question about the true accuracy 
of multidetector CT angiography (100–
102); CT criteria for diagnosis of arte-

Table 2

The Thoracolumbar Injury Classification and Severity (TLICS) Score

Feature No. of Points

Injury morphology
 Compression (eg, axial, lateral) 1
 Burst 2
 Translational or rotational (eg, unilateral, bilateral facet dislocation) 3
 Distraction (flexion, extension) 4
Posterior ligamentous complex
 Suspected or indeterminate 2
 Injured 3
Neurologic status
 Nerve root 2
 Complete cord injury 2
 Incomplete cord injury 3
 Cauda equina 3

Source.—Reference 67.

Table 3

The Subaxial Cervical Injury Classification (SLIC) System

Feature No. of Points

Injury morphology
 Compression 1
 Burst 2
 Distraction (eg, perch facet, hyperextension) 3
 Rotational or translational (eg, severe flexion or compression injury,  
  facet dislocation, teardrop)

4

Discoligamentous complex
 Indeterminate 1
 Disrupted (eg, widening of anterior disk space, perch facet or dislocation,  
  kyphotic deformity)

2

Neurologic status
 Root injury 1
 Complete cord injury 2
 Incomplete cord injury 3

Source.—Reference 68.

rial injury include vessel irregularity, 
wall thickening secondary to mural he-
matoma, abrupt caliber change, raised 
intimal flap, intraluminal thrombus, 
pseudoaneurysm, occlusion, active ex-
travasation, and early venous filling (ar-
teriovenous fistula) (50,51,78,103–105) 
(Figs 12, 13).

Biffl et al (106,107) proposed a clas-
sification for blunt carotid artery injury 
that has gained great acceptance and 
has also been widely applied to blunt 
vertebral artery injury. In this clas-

sification, a grade 1 injury involves ar-
terial wall irregularity or dissection or 
intramural hematoma causing luminal 
narrowing of less than 25%; a grade 2 
injury, intraluminal thrombus, raised 
intimal flap, or dissection causing lu-
minal narrowing of 25% or greater; a 
grade 3 injury, pseudoaneurysm forma-
tion; a grade 4 injury, vessel occlusion; 
and a grade 5 injury, vessel transec-
tion or arteriovenous fistula. In general, 
higher grades of injury are associated 
with increased risk of stroke, although 
for the vertebral circulation, grade 2 in-
juries more frequently cause ischemic 
events. The reported stroke rate in ver-
tebral artery injury is 24% and does not 
increase with injury grade (88). The 
reported stroke incidence of stroke 
associated with blunt carotid injury is 
3%, 11%, 33%, 44%, and 100%, for 
Grades 1–5, respectively (107,108).

Conclusion

As CT technology has evolved, whole-
body multidetector CT has become an 
integral part of the initial assessment of 
many injured patients. Cervical spine 
CT is easily included in the whole-body 
screening performed in patients with 
severe blunt polytrauma.
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