QBS 121/PH 271: Foundations of Biostatistics II: Regression

Course Directors: Dr. Tor Tosteson & Dr. Todd MacKenzie

  • Course description: This course covers generalized regression theory and applications as practiced in biostatistics and the quantitative biomedical sciences. The basics of linear model theory are presented, and extended to generalized linear models for binary, counted, and categorical data; regression models for censored survival data; and multivariate regression and mixed fixed and random effects regression models for longitudinal and repeated measures data.. Special topics include measurement error in regression, instrumental variables, causal inference, propensity scores and inverse propensity weighted estimation, methods for missing data. Current statistical methodologies for model selection and classification are introduced in the context of applications in genomics and the biomedical sciences. The course features computational examples using the statistical package R, with references as necessary to other statistical packages.. The course meets 3 hours per week. Most course meetings will consist of presentations and demonstrations of analytic methods using datasets from QBS projects and R or other statistical software. The final meeting will feature presentation of class projects consisting of the explanation and application of a novel regression methodology in a QBS case study. 
  • Prerequisites:
    • Coursework: QBS 120 or instructor permission.
    • Programming: Intermediate proficiency in R.