COVID-19 Information

Edit Entry | Edit CV

Edward J. Usherwood, PhD

Professor of Microbiology and Immunology

Microbiology and Immunology

University of Cambridge, U.K., Ph.D., 1997
University of Cambridge, U.K., BA 1994

Dr. Usherwood received his B.A. in 1990 in Natural Sciences from the University of Cambridge, U.K. He continued his studies at the University of Cambridge and was awarded his Ph.D. from the Department of Pathology in 1994. From 1994 to 1997 Dr. Usherwood undertook postdoctoral research at the University of Edinburgh, U.K. then he moved to Memphis, TN for further postdoctoral work in the Department of Immunology at St. Jude's Children's Research Hospital. From 1999 to 2001 he held a position as a Research Assistant Member at The Trudeau Institute, NY. He came to Dartmouth in 2001 as an Assistant Professor, then was promoted to Associate Professor in 2007.

Immunology Program
Molecular and Cellular Biology Graduate Programs
Molecular Pathogenesis Program
Norris Cotton Cancer Center

Usherwood lab website:

Contact Information:

Dartmouth Medical School
Borwell Research Building - HB7556
1 Medical Center Drive
Lebanon NH 03756

Phone: 603-650-7730
Fax: 603-650-6223
Email: Edward.J.Usherwood@Dartmouth.Edu

Professional Interests:

Dr Usherwood studies the generation and maintenance of T cell memory. T cells recognized and destroy cells infected with intracellular pathogens such as viruses and are also important in protection against tumor development . A large expansion in the number of virus-specific T cells occurs shortly after virus infection, however most of these cells die after virus clearance has been accomplished. A small residual population of T cells then persists lifelong and forms the basis of immunological memory. Using techniques such as MHC/peptide tetramer staining we can identify these memory cells and interrogate their functional capabilities under different conditions. Our work has shown that costimulation and CD4 T cell help have dramatic effects both on the resting memory population and their ability to mount secondary immune response. We have devised several methods to restore the functional defects present in these cells, and these may represent important new immunotherapies.
Another major area of interest in the lab is the impact upon the memory response of a persistent virus infection. We use the murine gammaherpesvirus model system, which represents a low-load persistent virus infection. This virus is also a model for the human gammaherpesviruses, which are significant causes of malignancy and other disease in immunosuppressed patients. Therefore this work has significance both for our understanding of the memory T cell response in general and more specifically how the gammaherpesviruses are controlled, in addition to how and why this control breaks down. Our research has shown several distinct changes occur in the memory response during persistent infection. In models where immune surveillance breaks down we are studying the underlying mechanisms for this breakdown, and developing immune therapies to restore immune surveillance to the virus.

Grant Information:

NCI R01 "Immune surveillance in murine gammaherpesvirus infection"
NIAID R01 "T cell function in murine gammaherpesvirus infection"

Courses Taught:

Medical Virology (Medical School)
Immune Therapy Advanced Course (MCB graduate program)
MCB graduate program core course

Selected Publications:


Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma.
Molodtsov AK, Khatwani N, Vella JL, Lewis KA, Zhao Y, Han J, Sullivan DE, Searles TG, Preiss NK, Shabaneh TB, Zhang P, Hawkes AR, Malik BT, Kolling FW 4th, Usherwood EJ, Wong SL, Phillips JD, Shirai K, Angeles CV, Yan S, Curiel TJ, Huang YH, Cheng C, Turk MJ
Immunity. 2021 Sep 14;54(9):2117-2132.e7. doi: 10.1016/j.immuni.2021.08.019.
PMID: 34525340

Endometrial Cancer Suppresses CD8+ T Cell-Mediated Cytotoxicity in Postmenopausal Women.
Patel MV, Shen Z, Rodriguez-Garcia M, Usherwood EJ, Tafe LJ, Wira CR
Front Immunol. 2021;12:657326. doi: 10.3389/fimmu.2021.657326. Epub 2021 Apr 23.
PMID: 33968059

Control of B Cell Lymphoma by Gammaherpesvirus-Induced Memory CD8 T Cells.
Preiss NK, Kang T, Usherwood YK, Huang YH, Branchini BR, Usherwood EJ
J Immunol. 2020 Dec 15;205(12):3372-3382. doi: 10.4049/jimmunol.2000734. Epub 2020 Nov 13.
PMID: 33188072

Zbtb20 Restrains CD8 T Cell Immunometabolism and Restricts Memory Differentiation and Antitumor Immunity.
Sun Y, Preiss NK, Valenteros KB, Kamal Y, Usherwood YK, Frost HR, Usherwood EJ
J Immunol. 2020 Nov 15;205(10):2649-2666. doi: 10.4049/jimmunol.2000459. Epub 2020 Sep 30.
PMID: 32998985

CD8+ T Cells Require ITK-Mediated TCR Signaling for Migration to the Intestine.
Cho HS, Ha S, Shin HM, Reboldi A, Hall JA, Huh JR, Usherwood EJ, Berg LJ
Immunohorizons. 2020 Feb 7;4(2):57-71. doi: 10.4049/immunohorizons.1900093. Epub 2020 Feb 7.
PMID: 32034085

Dissociating STAT4 and STAT5 Signaling Inhibitory Functions of SOCS3: Effects on CD8 T Cell Responses.
Hwang JY, Holland JE, Valenteros KB, Sun Y, Usherwood YK, Verissimo AF, McLellan JS, Grigoryan G, Usherwood EJ
Immunohorizons. 2019 Nov 20;3(11):547-558. doi: 10.4049/immunohorizons.1800075. Epub 2019 Nov 20.
PMID: 31748225

Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection.
Hwang JY, Sun Y, Carroll CR, Usherwood EJ
mSphere. 2019 May 22;4(3) pii: e00221-19. doi: 10.1128/mSphere.00221-19. Epub 2019 May 22.
PMID: 31118303

Myeloid-specific Acat1 ablation attenuates inflammatory responses in macrophages, improves insulin sensitivity, and suppresses diet-induced obesity.
Huang LH, Melton EM, Li H, Sohn P, Jung D, Tsai CY, Ma T, Sano H, Ha H, Friedline RH, Kim JK, Usherwood E, Chang CCY, Chang TY
Am J Physiol Endocrinol Metab. 2018 Sep 1;315(3):E340-E356. doi: 10.1152/ajpendo.00174.2017. Epub 2018 Mar 13.
PMID: 29533741

Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA.
Habison AC, de Miranda MP, Beauchemin C, Tan M, Cerqueira SA, Correia B, Ponnusamy R, Usherwood EJ, McVey CE, Simas JP, Kaye KM
PLoS Pathog. 2017 Sep;13(9):e1006555. doi: 10.1371/journal.ppat.1006555. Epub 2017 Sep 14.
PMID: 28910389

MicroRNA miR-155 Is Necessary for Efficient Gammaherpesvirus Reactivation from Latency, but Not for Establishment of Latency.
Crepeau RL, Zhang P, Usherwood EJ
J Virol. 2016 Sep 1;90(17):7811-21. doi: 10.1128/JVI.00521-16. Epub 2016 Aug 12.
PMID: 27334594

View more publications on PubMed