Update in ASTHMA and COPD: Clearing the Air What Works and What Doesn't?

> Blair Brooks MD Dartmouth Hitchcock Medical Center Community Faculty Development Symposium 11/05/04

Knowing is not enough: we must apply. Willing is not enough: we must do.

Goethe

Overview of talk

Asthma

- Diagnosis
- Chronic treatment
- Acute exacerbation treatment
- COPD
 - Chronic treatment
 - Acute exacerbations
 Diagnostic testing
 Treatment

Epidemiology of asthma

Prevalence

5-12% US adult population or >200,000 adults

Prevalence increased 74% over 20 yrs

Financial impact

- 11 billion annual costs attributed to asthma
- 465,000 hospitalizations per year
- 1.8 million ER visits (20-30% admission rate)
- 10.4 million MD office visits
- Pts w/ exacerbations use 3.5-18x health care dollars

Mortality

- 4487 deaths in 2000 (61% increase over past 20 yrs)

Health Disparity and Asthma

African Americans – Hospitalization rates 1.4-4x higher More ED visits for asthma – Mortality rates 1.3-5.5x higher Less likely to use inhaled steroids in MC setting Women Lower quality of life with asthma – Hospitalization rate 2.5x higher

Why the Disparities

SES?
General Access to health care?
Race specific barriers?
Educational Level?

Asthma Case #1

45 yo M with new onset SOB, chest tightness, intermittent wheezing. No CP, h/o CAD, reflux symptoms, no prior h/o dx asthma. Non – smoker Mild productive cough with wheezing white sputum, no infection.

Exam – Normal except minimal end expiratory wheezing.

Audience Question #1

What would your next diagnostic step be? (choose one) Inistory is sufficient diagnose asthma Inistory and wheezing on exam is sufficient Inistory and wheezing on exam is sufficient Inistory Flow Rate

Accuracy of Hx and PE in Diagnosing Asthma?

Clinicians:

- Disagree about presence or absence of respiratory signs 55-89% of the time
- Correctly predict PFT findings 50%
- Correctly diagnose asthma based on Hx and PE 63-74%

Ann All Asthma Immunology 1996;76:1.

Diagnostic Accuracy of Asthma History

SYMPTOM	SENSITIVITY
Persistent wheeze	35%
Chronic cough	24%
Chronic Dyspnea	29%

	PPV	NPV
Dyspnea + h/o asthma	48%	76%
Dyspnea + wheezing	42%	83%

Are PFTS Accurate/Useful?

Spirometry

Reproducible (variation <5%)¹

Accurate (sensitive to airflow obstruction)²

Response to bronchodilators
 Consensus as to cutoff for + test => increase by 12%, or >200 ml

Methacholine challenge
 Sensitivity >95%; Specificity ??

Peak Expiratory Flow Rate (PEFR)

- 30% variability between individuals
- < 10% variability within patient (>5%)³
- Requires pt understanding and cooperation

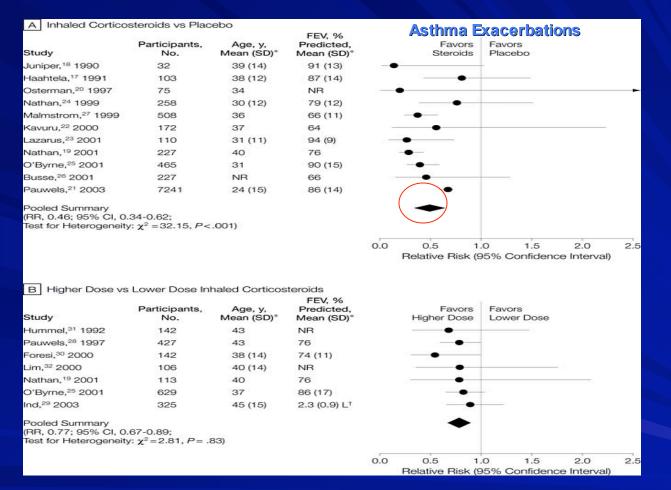
¹ NEJM 1994;331:25 ² Am J Respir Crit Care Med 1995;152:1107 ³Chest 2003;124:501

NAEPP Expert Panel: Diagnostic Testing Recommendations

– Hx and PE

- Spirometry with response to bronchodilators
- Methacholine challenge test if above is neg and suspicion is high

误机旅客柜台 No-show check-in counter


Chronic Asthma: Treatment

What are the 4 categories of chronic asthma?
Mild intermittent
Mild persistent
Moderate persistent
Severe

AR question #2

There is good evidence that early administration of inhaled corticosteroids: (check all that apply) Reduces asthma exacerbations Prevents airway remodeling Are cost – effective Can be safely reduced in moderate asthma

Do Inhaled Corticosteroids reduce exacerbations? – a Meta-analysis

Inhaled steroids reduce exacerbations by 55%

Sin, D. D. et al. JAMA 2004;292:367-376

Do inhaled steroids reduce exacerbations? One study in mild persistent asthma

- Patients: START Trial- 7241 pts with mild persistent asthma
- Design: 3 year, multinational, double blind, placebo RCT
- Intervention : QD budeniside vs. placebo

Outcome	EER	CER	RRR	NNT
	Budeneside	Placebo		
>1 Asthma	117/3597	198/3568		
Exacerbation	3.3%	5.5%	46%	45 pts
in 3 years				

<u>Need to treat 45 pts with mild persistent asthma</u> for 3 years to save one asthma exacerbation

Lancet 2003;361:1071

Does early administration of inhaled steroids delay airway remodeling?

Data is not definitive

Most benefit from inhaled steroids accrued in 1st 3 months (300-400 ml FEV1)

 Delayed use of inhaled steroids results in prolonged airway hyper-responsiveness – even after 6 months of therapy
 This may result in more remodeling

Chest 1996;110:35

Are inhaled corticosteroids cost effective?

Patients: mild persistent asthma, n=7165 Design: 3 yr, blinded, multi-center international RCT Intervention: Daily inhaled steroid vs usual care

Patients	Direct cost effectiveness	Indirect cost effectiveness
Mild Persistent Asthma Budeniside vs Usual care	\$9.40/SFD	\$3.40/SFD

Direct cost = Health care related costs. Indirect cost = Lost wages, societal cost SFD = Symptom Free Day

•<u>Second study - \$13,500 incremental cost /QALY</u> <u>attributable to inhaled steroids</u>

> J Allergy Clin Immunol 2003;112:1229 J Allergy Clin Immunol 2003;108:39

What is the NNT (days of steroid treatment) to achieve a Symptom Free Day?

Same trial:

Outcome	EER Inhaled Steroid	CER Usual Care	RRR	NNT*
Symptom Free Day	319 SFD/yr 88%d/yr	289 SFD/yr 82%d/yr	6%	18

<u>*Need to treat a patient 18 days on average</u> <u>to add one symptom free day</u>

J Allergy Clin Immunol 2003;112:1229

Can you safely reduce inhaled corticosteroids?

Patients: 259 pts, moderate asthma, high dose inhaled steroids
 Design: 12 mo multi-center, blinded, RCT

Intervention: Continued high dose vs reduction to 50% dose

	Stepdown group (n=130)	Control group (n=129)	Odds ratio (95% CI)	P value (χ ² test)
Asthma exacerbations	40 (31)	33 (26)	1.29 (0.75 to 2.23)	P=0.354
Asthma related events:				
Visit to general practice	45 (35)	41 (32)	1.14 (0.68 to 1.91)	P=0.629
Home visit by general practitioner	3 (2)	6 (5)	0.48 (0.12 to 1.98)	P=0.304
Visit to accident and emergency department	2 (2)	1 (1)	2 (0.18 to 22.3)	P=0.567
Admission to hospital	4 (3)	1 (1)	4.06 (0.45 to 36.86)	P=0.179

<u>Nonsignificant differences between patients with</u> <u>reduced doses and those with high dose steroids.</u>

AR question #3

What one medication has the greatest efficacy as a monotherapy in managing moderate persistent asthma?

Deukotrienes inhibitors
Dong acting B2 Agonists
Inhaled corticosteroids
Ipatropium

Are long acting B2 agonists better than inhaled steroids as monotherapy?

- Patients: 164 pts with mild-moderate persistent asthma
- Design: 28 wk blinded placebo controlled 6 center RCT
- Intervention: Inhaled triamcinolone vs salmeterol vs placebo

Outcomes	EER	CER	RRR	NNT
	Steroids	Salmeterol		
Asthma exacerbations	7%	20%	65%	5.5

<u>Steroids are better than B2 agonists in all categories.</u> Both medications better than placebo.

> JAMA 2001;285 (20):2583

Are leukotriene inhibitors better than inhaled steroids as monotherapy?

Patients: 895 Mild – Moderate Asthma age 15-85

- Design: 12 week, multi-center, double blind, placebo, RCT
- Intervention: Montelukast vs inhaled beclamethasone

Outcomes	EER	CER	RRR	NNT
	(steroids)	LI (only)		
Asthma	10%	15.6%	32%	18
Exacerbation				

<u>Cochrane Data Base meta-analysis also concludes Leukotriene</u> inhibitors are not as efficacious ICS therapy as first line therapy.

> AIM 1999;130(6):487 ACP Journal Club 2003:138 (2):42

Are Leukotriene	Inhibitors better than
Salmeterol as s	econd line therapy?

- Patients: 1490 chronic (>1 yr) mild to moderate asthma
- Design: 1yr double blind multi-center RCT
- Intervention: Inhaled steroids + montelukast or salmeterol

Outcomes	EER	CER	RRR	NNT
	Steroids + Ll's	Steroids + LABA		
Asthma	20%	19%	5%	NS
Exacerbation				

 Quality of Life and FEV1 were the same as well.
 No difference between the two adjunct therapies except cost.

BMJ 2003:327: 891

AR Question #4

In what severity of asthma can Omalizumab recommended as an adjunct therapy? (May choose more than one)

> Mild Intermittent Mild persistent Moderate persistent Severe

Does Anti IGE therapy work?

- Patients: 2037 pts in 8 studies
- Design: Meta-analysis Cochrane. Only blinded RCTs
- Intervention: Omalizumab (Xolair)

Outcomes	EER Omalizumab	CER Placebo	RRR	NNT
Asthma Exacerbation	14%	26%	46%	9

 <u>Omalizumab helps in selected patients with atopic hx</u>, moderately high IGE reduce steroids, improve sxs
 <u>\$12,000/yr</u>

Cochrane Data Base Syst Rev 2003(3) CD003559

Does Immunotherapy work?

Patients: 3506 in 75 RCTs

- Design: Meta-analysis by Cochrane Collaboration
- Intervention: Specific immunotherapy

EER	CER	RRR	NNT
Immunotherapy	Placebo		
29%	60%	51	3.2
	Immunotherapy	Immunotherapy Placebo	Immunotherapy Placebo

 <u>Also demonstrated improvement in FEV1 and</u> <u>reduction in medication with IT</u>
 <u>\$800 =>\$170/vr</u>

Cochrane Syst Rev 2003; 4: CD001186

AR question #5

Which strategy is best for using B-blockers in patients with asthma? Avoid non-selective B-Blockers Avoid selective B-Blockers Avoid both selective and non-selective Can use B-blockers in most asthmatics without increasing asthma sxs

What is the impact of B Blockers on Asthmatic patients?

Patients: 400 pts with mild to moderate asthma, COPD w/ 15% improvement in FEV1 after bronchodilator rx

Design: Meta-analyses

Intervention: Selective beta blockers

<u>RESULTS</u>

- Single dose use
 8% decrease FEV1
- Sustained use
 - No increase in SXS, FEV1 or beta agonist inhaler use

Selective B1 Beta blockers are safe in mild to moderate asthma

Ann Int Med 2002;137:715 Cochran Database Syst Rev 2001;2:CD002992)

What about theophylline?

Only one study showing theophylline better than short acting beta agonists in pts on inhaled steroids.

Am J Resp Crit Care 1995;151:325

Acute Asthma Exacerbations: Treatment

34 yo obese woman with h/o asthma presents to ED with progressive SOB/ wheezing, h/o uri sxs in past week, no f/c/sputum production/chest pain.

PE – 150/100 w/ pulsus of 22. P 120 RR 32 36.9 89% on RA

Using accessory muscles. Cant talk in complete sentences. Prolonged expiratory phase. Wheezes throughout (or silent).

AR question #6

In managing acute asthma exacerbations in the emergency room, which treatment(s) is **NOT** supported by evidence?

- 1. B2 agonists (inhaler, nebulized)
- 2. Ipatropium
- 3. Theophylline
- 4. Steroids (oral, parenteral)

Does Ipatroprium improve acute asthma exacerbation outcomes?

- Patients: 172 ED pts with acute asthma exacerbations
- Design: RCT, Double Blind (short term)
- Intervention: Triple therapy vs Ipatropium and Steroids vs B2 Agonists and steroids

Outcomes	EER	CER	CER	RR	NNT
	Triple rx ¹	Steroid, B2	Steroid, Ipat		
FEV1	2.1	1.7	1.8	NS	NS
Hospital Admissions	11%	20%	25%	45%, 56%	11, 7

¹Triple Rx= Inhaled steroid, Ipatropium, B2 agonist

<u>Triple Therapy outperforms double therapy.</u>
 <u>Ipatropium has greater benefit in more severe disease.</u>

Chest 2003; 123:1908.

Effect of Inhaled Anticholinergic Agents in the Treatment of Adult Patients With Acute Asthma

				Difference in Hospital	
	Patients,	Jadad	Anticholinergic	Admissions	Charge in Pulmonary Function
Study	No.	Score	Protocol	(95% CI)	(95% CI)
Owens and George ³⁷	37	3	$\begin{array}{c} \mathrm{AT} \; (2.5 \; \mathrm{mg} \times 1) \\ \mathrm{NEB} \end{array}$	Trend favorable to IB group (12% vs 20% [NS])	NS
Cydulka and Emerman ³⁸	125	3	$\frac{\text{GL} (2 \text{ mg} \times 1)}{\text{NEB}}$	NA	Favorable to control group (FEV ₁ , 52% vs 82% of predicted; p < 0.05)
Diaz et al ⁴⁰	126	3	$\begin{array}{c} \mathrm{AT} \; (2.0 \; \mathrm{mg} \times 2) \\ \mathrm{NEB} \end{array}$	NS	NS
Kamei et al ²⁷	69	2	$\begin{array}{l} \text{OB} \ (200 \ \mu\text{g} \times 5) \\ \text{MDI} \ + \ \text{spacer} \end{array}$	Trend favorable to IB group (6.5% vs 12.1% [NS])	Favorable to IB group: mean PEF difference, 51.0 L/min (1.7– 100.6)
Nakano et al ³⁰	74	3	$\begin{array}{l} OB \; (200 \; \mu g \times 5) \\ MDI \; + \; spacer \end{array}$	Trend favorable to IB group (13.2% vs 27.8% [NS])	Favorable to IB group: mean PEF difference, 37.8 L/min (15.9– 59.8)
Rodrigo and Rodrigo ²⁹	180	4	IB (24 puffs/h × 3) MDI + spacer	20% vs 36% favorable to IB group ($p = 0.01$); RR, 0.51 (0.31–0.83); NNT, 5 (3–17)	AN patients: favorable to IB group: mean PEF difference, 52.3 L/ min (27–77.6)

*AT = atropine sulfate; GL = glycopyrrolate; OB = oxitropium bromide. See Table 1 for abbreviations not used in the text.

Trend across studies favoring Ipatropium over placebo

Chest, 2002;121(6):1977.

Do oral or inhaled steroids in ED improve outcomes in acute asthma exacerbations?

- Patients: 352 ED pts in 7 trials
- Design: Meta-analysis
- Intervention: Inhaled corticosteroids vs placebo

Outcomes	EER	CER	RRR	NNT
	Inhaled steroids	Placebo		
Hospital admission	10%	27%	61%	6

Steroids (oral/parenteral) reduce hospital admissions.

Ann Emerg Med 2002; 40:145

Are parenteral steroids more effective than inhaled steroids?

- Patients: 313 pts in 4 studies with asthma exacerbations
 Design: Meta-analysis
- Intervention: Inhaled vs parenteral steroids

<u>No difference in hospital admission rates.</u>
<u>No clinically significant different outcomes.</u>
<u>Slightly later (1-2 hrs) improvement in FEV1 with IV.</u>

Ann Emerg Med 2002; 40:145

Do **oral** + inhaled steroids improve outcomes in acute asthma exacerbations?

- Patients:191 ED pts, PEFR <80%</p>
- Design: Single site, blinded, placebo controlled RCT
- Intervention: 7 d oral steroids vs 7d oral + 3 wks inhaled steroids

Outcomes	EER Oral + inhaled steroids	CER Oral steroids	RRR	NNT
Relapse	13%	25%	48%	9

Inhaled steroids reduce relapse rate in acute setting.

JAMA 1999;281:2119

Are B2 Agonist MDIs more effective than Nebulizers?

No

Chest 1993;104:835

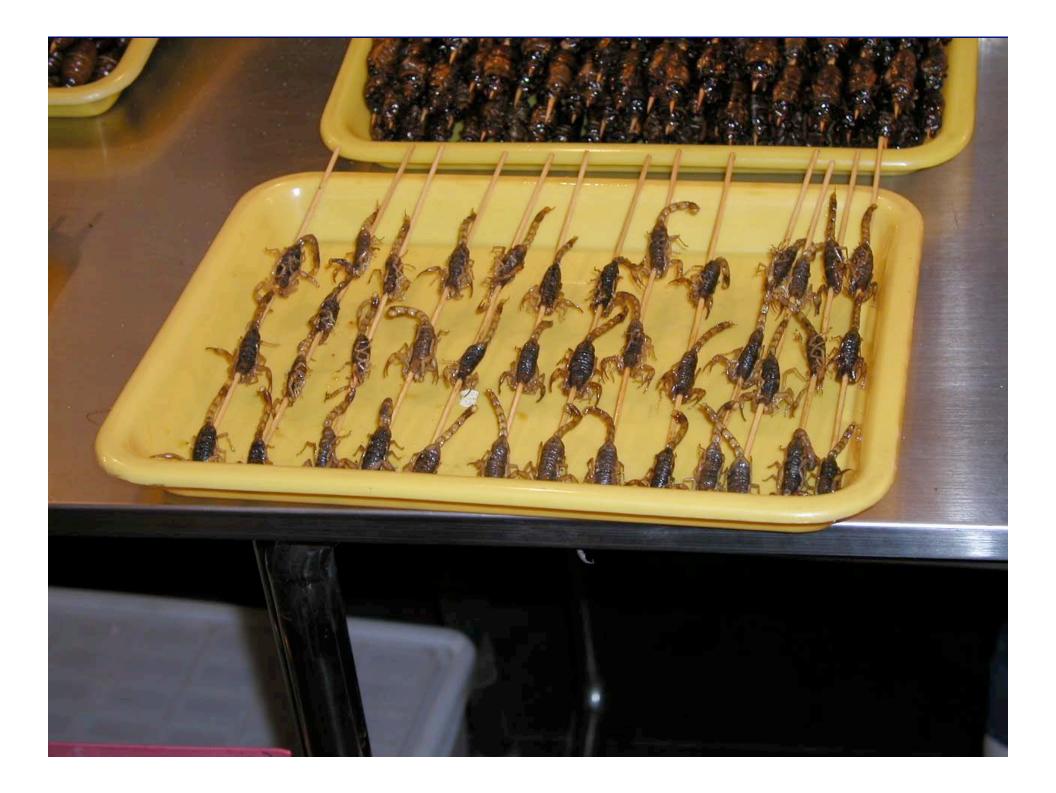
AR question #7

Which of the following treatments have evidence to justify their use in severe asthma exacerbations? (May choose more than 1)

- 1. Mg SO4
- 2. Leukotrienes
- 3. Heliox
- 4. Theophylline
- 5. Glucagon

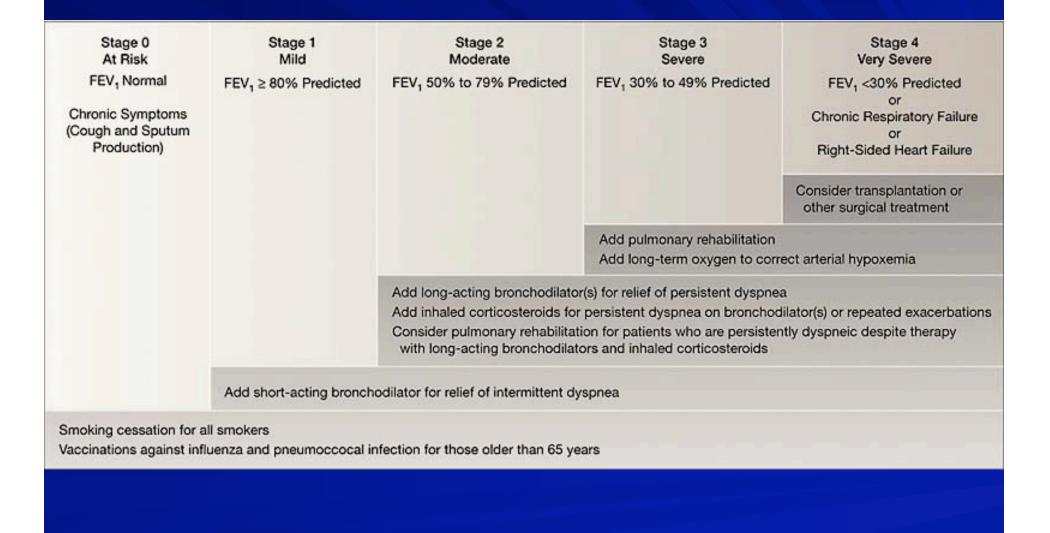
Other therapies for acute asthma exacerbations

MgSO4


May have efficacy in some severe situations.

Leukotriene Inhibitors

- Not effective
- Heliox
 - No evidence
- Theophylline
 - Not effective and has side effects
- Glucagon
 - No evidence


Other therapies for chronic and acute asthma exacerbations

- Nebulized furosemide, heparin, lidocaine
- Methotrexate, gold, cyclosporine, colchicine hydroxychloroquine, IVIG
- Macrolides
- Acupuncture, chiropractic manipulation, massage
- Dietary manipulations, antioxidants
- Breathing exercises

Treatment of COPD

Stepwise Chronic COPD Treatment

Do inhaled steroids prevent COPD exacerbations?

- Patients: 244 pts, 64 yo with stable moderate to severe COPD, no asthma
- Design: 6 month single site, blinded, placebo controlled RCT
- Intervention: 4 months run—in on steroids and ipatropium then randomize to continued steroid vs placebo

Outcomes	EER	CER	RRR	NNT
	Inhaled Steroids	Usual care no steroids		
COPD	48%	58%	24%	8
Exacerbation				

•<u>Steroids delayed 1st exacerbation, reduced recurrent</u> <u>exacerbations (NNT 7), better QOL.</u> •<u>Most clear benefit in FEV1 <50%</u>

Am J Respir Crit Care Med 2002: 166:1358

AR Question #8

Which of the following have been shown to delay progression of COPD (loss of FEV1)? (May choose more than 1)

- 1. Smoking cessation
- 2. Inhaled Steroids
- 3. B2 Inhalers
- 4. Ipatropium

Do inhaled steroids slow progression of COPD?							
 Patients: 3715 stable COPD pts. No asthma. Design: Meta-analysis 8 RCTs w/ >2 yr f/u Intervention: Inhaled corticosteroids 							
OutcomesSteroidsNoRate differenceRel.SteroidsSteroidsDiff.							
Rate of FEV1 decline 46 ml/yr 54 ml/yr 8 ml/yr 15%							
	ession (able COPD p alysis 8 RCTs led corticost Steroids	ession of COPable COPD pts. No astheralysis 8 RCTs w/ >2 yr f/led corticosteroidsSteroidsSteroidsNo steroids	ession of COPD?able COPD pts. No asthma.alysis 8 RCTs w/ >2 yr f/uled corticosteroidsSteroidsNo steroidsRate difference				

<u>Steroids: 15% "slower decline in FEV1</u>
 <u>Smoking Cessation: 50% slower decline in FEV1</u>

Thorax 2003;58:937

AR question #9

 What long term management intervention has the greatest impact on symptoms in patients with COPD? (choose 1)
 1.Inhaled steroids
 2.B2 agonist Inhalers
 3.Smoking cessation
 4.Ipatropium

Do inhaled B2 agonist improve function in COPD?

- Patients: 237 COPD pts. 56-70 yo
- Design: Cochrane Meta-analysis of 13 placebo RCTs
- Intervention: Short acting B2 agonist inhalers >7d

Outcomes	EER Salbutemol, Terbutaline., Isoprot.	CER Placebo	RRR	NNT
Treatment failure rate	22%	46%	51%	4

•<u>Better symptom scores with short acting B2 inhalers.</u> •<u>Improved FEV1, FVC, PEFR, and Sx scores.</u>

Thorax 2003:58:580

Is Tiotropium more effective than Salmeterol in COPD?

Patients:1207 pts. 64 yo stable COPD. no asthma, O2.

Design: 6 mo. multi-center/multi-national, blinded, placebo RCT

Intervention: Tiotropium, Salmeterol, Placebo

Outcomes	EER	CER	RRR	P
	Tiotropium	Salmeterol		value
# COPD	1.07	1.23	.14	NS
Exacerbations				

<u>No difference between Tiotropium and Salmeterol_in #, duration</u> of exacerbations, hospitalizations, FEV1, symptom scores.

Are self management programs effective in COPD?

- Patients: 191 pts with stable COPD FEV1 25-75% predicted. No major co-morbidities.
- Design:12 mo multi-center blinded, RCT. F/u 86%
- Intervention: Self Management program.

Outcomes	EER	CER	RRR	NNT
	SMP	Usual Care		
Hospitalizations	71	118	40%	2

Self management program resulted in impressive reduction in hospitalizations, ED visits

Arch Int Med 2003;163:585

COPD flare: Diagnostic tests CXR changes therapy in 16-21% cases FEV1 of <40% predicted => sensitivity 96% in predicting relapse or hospitalization Hypercapnia is unlikely if FEV1 >35% predicted.

Ann Emerg Med 1993;22:680

COPD flare: Are MDIs more or less effective than Nebulizers?
 Bottom line:

 <u>Meta-analysis of 12 high quality study in</u> 2002 and a subsequent excellent trial showed no difference between MDI (w/ or w/o spacers) and nebulizers

Arch of Intern Med 1997;157:1737

COPD flares: What is the optimal duration of Steroids?

- Patients: 271 hospitalized VA pts w/ COPD flare
- Design:6 mo. multi-center blinded RCT
- Intervention: 3 d IV steroids + 2 or 8 wks oral compared to placebo

Outcomes	EER	CER	RRR	NNT
	Steroids	Placebo		
Treatment Failure	23%	33%	30%	10

<u>Treatment with steroids resulted in fewer treatment</u> <u>failures, 1 d shorter hospital stay</u>
<u>8 wks steroid rx is not better than 2wks!</u>

NEJM 1999;340 (35):1941

COPD flares: Are Inhaled steroids as effective as oral?

Patients: 199 hospitalized pts w/ COPD flare

Design:20 mo. multi-center, blinded, placebo controlled RCT

Intervention: Inhaled vs IV steroids vs Placebo

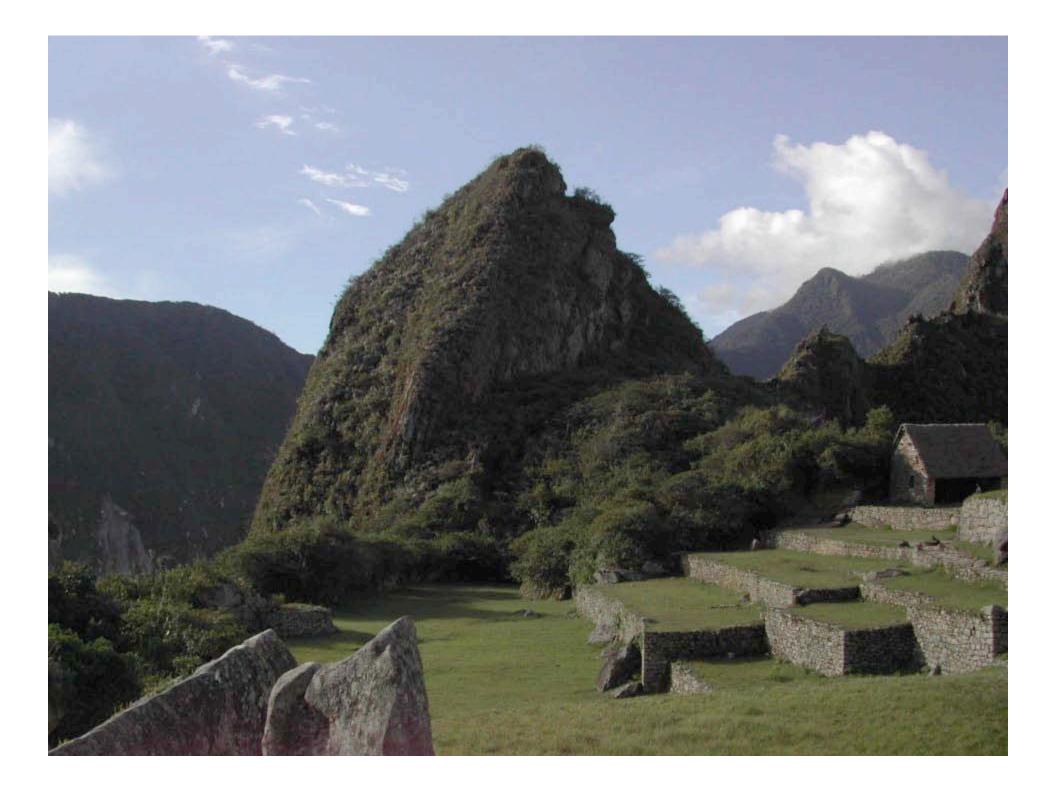
<u>Inhaled vs IV steroids – no significant clinical outcome</u> <u>differences.</u>

 Minimal advantage of steroids (IV or Inhaled) over placebo in physiologic measures (FEV1)

Am J Respir Crit Care Med 2002:165:698

COPD flares: Does Ipatropium improve outcomes?
 5 RCTs have compared Anticholinergic vs.
 B2 Agonist monotherapy
 No substantial physiologic or patient outcome difference.

 7 RCTs have compared adding an anticholinergic bronchodilator to B agonist.
 – No significant differences in physiologic or patient outcomes


COPD flares: Does Theophylline improve outcomes?

No. It increases side effects.

On that Note....

Thank you.

Questions?

